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Aggregate Technology Shocks, Market Returns, and

Market Premiums

Abstract

This paper highlights the role of technology in asset pricing by demonstrating market return
predictability based on aggregate technology shocks from both theoretical and empirical perspec-
tives. I solve simple general equilibrium models, in which technology shocks drive conditional
mean and volatility of future economic growth. The expected market returns and premiums
therefore vary across time. This implication is strongly supported by empirical evidence from
both U.S. and U.K. data. I use the growth of total patents and research and development (R&D)
expenditures as proxies for technological growth. I then find that the technology shocks, i.e.
unexpected growth of patents and R&D expenditures, have strong and distinctive explanatory
power for market returns and premiums in both short- and long-term predictive regressions.

These findings surpass survive robustness checks.

JEL classification: E32; E44; G12; O30
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1 Introduction

The evidence of the economic impact of science and technology is all around us.

Zvi Griliches (1987)

Since the seminal paper of Solow (1957), the economic literature has long recognized that
technologies, as observable activities that permanently improve productivity, are driving forces
behind economic growth. Technology shocks have been identified and confirmed as an important
source of macroeconomic fluctuations since Kydland and Prescott (1982). However, the linkage
between technologies and stock returns has rarely been explored in the finance literature. Specif-
ically, the effects of technology shocks on market returns and premiums are mixed in previous
theoretical work (e.g. Lettau, 2003) and have not been empirically verified. In this paper, I
demonstrate that technology shocks can drive up expected market returns and premiums in a
general equilibrium setting. More importantly, this causality is substantiated by my empirical
study based on patent and research and development (R&D) data. This paper therefore suggests

that technology shocks may be an important component in asset pricing models.

In the first part of this paper, I construct a real business cycle model composed of one abstract
good, one representative agent, and one representative firm. Despite its simplicity, this economy
describes the dynamics of the financial market, labor market, representative firm’s productions,
and representative agent’s work and consumption choices. Using a separable logarithmic utility
function, I derive an exact closed-form solution to this general equilibrium model and characterizes
the asset returns in terms of technology shocks and non-technology shocks. I find that time-variant
technology shocks influence the productivity and alter the conditional mean and volatility of

economic growth, leading to commensurate changes in expected market returns and premiums.

The economic intuition behind the model-implied market return predictability is relatively
straightforward. When the budget-constrained agent observes a positive technology shock, he
realizes that the shock permanently raises productivity, and his permanent income consequently
increases. According to permanent income hypothesis, the agent prefers to consume more today

L This pre-

and demands higher expected asset returns in exchange for today’s consumption.
dictability can be also explained through the production-side channel. If a positive technology
shock occurs, the budget-constrained firm’s productivity and expected investment returns rise.
Since the expected market returns should equal expected investment returns in equilibrium (e.g.

Cochrane, 1991), the expected market returns are higher.

The economic intuition behind the model-implied premium predictability can be explained

based on economic uncertainty. A positive technology shock makes economic growth more

1T recognize that, in the literature, the effect of productivity-relevant shocks on marginal rate of substitution

could be positive or negative, depending on model settings (e.g. Balvers and Huang, 2006).



volatile,? thus causing the agent to demand higher market premium in holding market portfolio
(e.g. Bansal and Yaron, 2004). As a result, technology shocks should lead market premiums.
The stated return predictability and premium predictability do not, however, contradict market
efficiency. Rather, they simply reflect the time series variation of the stochastic discount factor

and economic uncertainty caused by technology shocks.

To substantiate the proposed model and its predictions, I need measurable variables to describe
the aggregate technological growth in the empirical study. I employ two proxies, the growth rates
of successful patent applications and research and development (R&D) expenditures, both of
which have been widely used in the economic literature.®> Unlike R&D data, patent data has
rarely been considered in the finance literature.* However, the total patent growth could be
a purer and better proxy for aggregate technological growth because: (1) patents are the real
output of R&D activities; (2) patents are ready to be utilized and have business value; and (3)
the territorial principle applies to patent laws.® By considering both proxies, I can more precisely

gauge technological growth and shocks as well as their effects on asset prices.

I consider data from both the United States and the United Kingdom in my empirical study.
In the U.S. data, I find that patent shocks and R&D shocks significantly predict the raw and
excess returns of the Center for Research in Security Prices (CRSP) value-weighted index and
the Standard and Poor’s 500 (S&P500) index for both short- and long-term horizons. Moreover,
these two shocks compare favorably against other predictors including the consumption to wealth
ratio, labor income to consumption ratio, relative risk-free rate, dividend to price ratio, payout
ratio, term spread, and default spread. In other words, technology shocks help us to explain a
distinct part of market return variation that has not been explained before. This predictability
is of statistical and economic significance and survives several robustness checks. Similar results
are found in the U.K. data: U.K. patent shocks predict the raw and excess returns of the Fi-
nancial Times Stock Exchange 100 (FTSE100) index. My investigation therefore provides strong
empirical evidence for the proposed theoretical linkage between technology shocks and expected

market returns and premiums.

Finally, I consider a more general model that assumes an inseparable power utility function
and allows for capital accumulation. Although there exists no closed-form solution for this model,
economic dynamics can be numerically solved by a recursive value function iteration technique
(Christiano, 1990a and 1990b). Consistent with earlier findings, I find that the technology shocks

2For example, if we unintentionally invented many technologies today, we can expect more possible outcomes

of production tomorrow. So, the range of possible economic growth becomes wider.
3Patents and R&D expenditures have been commonly used as proxies for technologies in the literature since

Griliches (1984) and Pakes (1985). Other proxies proposed in the literature include the number of scientific journal

articles (Price, 1963), the number of book published (Alexopoulos, 2006), etc.
4Pakes (1985) and Rossi (2005) could be the only two to my limited knowledge.
5Generally speaking, a patent needs the approval of a national patent office to be protected in that nation’s

territory. Conversely, R&D can be implemented in one nation and utilized in another.



are positively correlated with future market returns and premiums in a calibrated economy.
Therefore, the return and premium predictability based on technology shocks also exists in a

more general economy.

The rest of the paper is organized as follows. Section 2 summarizes relevant studies and
explains my contribution to the literature. In Section 3, I construct a simple economy and derive
a closed-form solution based on a separable log utility function. Section 4 describes my data
and discusses empirical findings and the associated robustness checks. I then consider a more
general model based on an inseparable power utility function and solve it numerically in Section

5. Section 6 concludes this paper.

2 Relevant Literature

This study relates to several sets of the literature. The first is the technology and asset returns
literature. There are limited empirical studies exploring the relationship between asset returns and
technological activities on the firm/industry level. The earliest study in this set is Pakes (1985),
who investigates the dynamics among patents, R&D costs, and stock returns on a micro data set
that contains 120 firms over an 8-year period, and finds that stock returns are correlated with
concurrent and lagged patents and R&D expenses. Other studies in this direction focus mainly
on connecting the cross-sectional variations of stock returns with firms’ research activities: Chan,
Lakonishok, and Sougiannis (2001); Arora, Ceccagnoli, and Cohen (2005) discuss the R&D and
patent premiums; and Apedjinou and Vassalou (2004) consider the firm’s innovations and its
stock returns. On the other hand, even fewer studies have been devoted to theoretical modeling
of the linkage between technology and asset returns: Lettau (2003) applies Campbell’s (1994)
log-linear approximation to connect technology shocks to market returns and premiums. Pastor
and Veronesi (2005) construct a model explaining the technological revolution process, in which
a new technology is an idiosyncratic risk in the beginning and may become a systematic risk once
being widely adopted. Panageas and Yu's (2006) model explains why technology shocks lead to
business cycles and counter-cyclical market premiums. In this study, I try to construct a distinct
and testable model, which can be empirically justified by measurable technology proxies, i.e. both

patents and R&D expenses.

Since technology is an important component in the production function, the production-based
asset pricing approach helps to build a theoretical relationship between technology and asset
prices. Recently, some researchers in this field have started to notice the role of technology in
production-based asset pricing research. For example, Belo (2005) models “technology” hetero-
geneity using heterogeneous production functions to explain the cross-sections of stock returns.
Moreover, only a few studies in production-based asset pricing try to explain the time series

variation of stock returns (Balvers, Cosimano, and McDonald, 1990; Cochrane, 1991; Rodriguez,



Restoy, and Pena, 2002; Balvers and Huang, 2006), and virtually all of them use industrial pro-
duction as the explanatory variable. By constructing a general equilibrium model in which the
expected market returns are characterized by production variables, I can explain why the time

series variation of market returns can be attributed to technology shocks.

Another set of relevant literature is market return predictability. Researchers have proposed
several macroeconomic variables and financial ratios to predict market returns, and their reasons
are that these variables contain valuable information pertinent to time dependent fluctuations
in expected market returns due to time-varying economic conditions and investors’ preferences.
Financial ratios including the dividend to price ratio (Shiller, 1984; Campbell and Shiller, 1988;
Fama and French, 1988), the term spread and default spread (Fama and French, 1989), the
book-to-market ratio (Kothari and Shanken, 1997), the payout ratio (Lamont, 1998), and the
ratio of share prices to GDP (Rangvid, 2006) have been employed to predict stock returns.
On the other hand, macroeconomic variables including the relative risk-free rate (Campbell,
1990 and 1991), industrial production (Balvers, Cosimano and McDonald, 1990; Chen, 1991),
aggregate consumption to wealth ratio (“cay” of Lettau and Ludvigson, 2001), and labor income
to consumption ratio (Santos and Veronesi, 2006) have also been constructed as predictors. Since
technology shock is a critical component of productivity, I was motivated to inspect its explanatory

power for expected stock returns in terms of time series variations.

Finally, this paper also relates to the real business cycle research. The role of technology
shocks in macroeconomic dynamics was first addressed in Kydland and Prescott’s (1982) pioneer-
ing paper. Rouwenhorst (1995) connects business cycle research methods to asset pricing and
constructs a general equilibrium model that illustrates the economic dynamics including the risk-
free rate and stock market return. His study demonstrates the promising possibility in applying
dynamic equilibrium models to develop new asset pricing implications. In addition, Rouwenhorst
shows that the return predictability can be demonstrated in the simulated dynamics of a cali-
brated economy. His approach allows me to inspect the predictability of technology shocks in
models without closed-form solutions. In this study, I demonstrate that technology drives the
output growth and stock return in a calibrated economy, which further enhances our knowledge
in this field.



3 The Economy and A General Equilibrium Solution

In this section, I construct an economy to describe the interactive dynamics among financial
markets, production activities and consumption choices. My model setting is based on, but differs
substantially from Balvers, Cosimano, and McDonald (1990), and Balvers and Huang (2006). This
economy contains one representative agent, one representative firm, and one consumption good.
While this economy is a simple one, it delivers an intuitive and tractable general equilibrium
solution. More specifically, I can characterize the stochastic discount factor and the general
equilibrium asset returns in terms of production variables. Such a characterization allows me to

demonstrate why and how technology shocks affect real production and asset returns.

I first describe the basic setting and timeline of my model. I then derive the stochastic discount
factor, the investment return, the market return, and the risk-free rate. Finally, I discuss the

empirical implications of the proposed model.

3.1 Basic settings

The infinitely lived representative agent maximizes her /his period ¢ time-additive expected utility
as follows

Mazx {u(ct,n—nt) +ZﬁTEt [u(ct+T,n—nt+7)]} (1)

{n¢, se41, b1}

st ¢S P tbyy = sy(py +d;) + b, (1 + 7"{) + Ny Wy, (2)

where ( is a subjective discount rate, and u(c,, 7 — n,) characterizes the agent’s periodic utility
function. The latter depends on the agent’s consumption ¢, and leisure 7 — n,, where n denotes
total available time units and n, denotes the labor input. s, denotes the fractional share of
the stock of the representative firm held by the agent, and d, denotes the dividend per share
distributed by the firm. p, denotes the competitively determined stock price in time ¢, while b,
is the loan or debt provided by the agent, which is presumed to be risk-free. 7{ is the risk-free
rate for the period ¢ — 1 to t. Lastly, n, and w, denote the labor input and the competitive real

wage, respectively.

The representative firm is operated to maximize its stock price, the total value of all discounted

future dividends. The firm’s maximization objective in time t is

Moz {d+§E [( 1 m) d]} ®)

k b
{nt, kt+1, bet1} i=t+1

st dy = F(ng, ky, Aye,) = kppy + by —b,(14+7]) —naw, >0 (4)
F(ng,ky, Ayyey) = agn, k(2 A%, (5)
Ay =A v e=weap (&), (6)



where m, ,; denotes the stochastic discount factor of the investor (i.e. the agent) from time ¢ to
time ¢ + 1:

B 6u(ct+1, n— nt+1)/act+1
Miyr =P ou(c,,n—mn,)/0c, @

Equation (4) essentially defines the dividend in the context of the firm’s period-to-period budget

constraint: d, denotes the dividend distributed to the agent in time ¢, which must be larger than
or equal to zero. The firm uses its production output and new debt issuances to pay dividends
and wages, implement new investment, and pay off old debt with interest. The firm’s production
output, F(n,,k,, A,,¢,), derives from a Cobb-Douglas production function that contains labor
input n,, capital input k,, a technology component A,, and a temporary non-technological shock
g, in level. For simplicity in notation, I use F,(:) to replace F(n,,k,, A,,¢,) hereafter. k, , is
the output in period ¢ reserved for investment in period ¢ 4+ 1, which fully depreciates after being
utilized in time ¢+ 1.7 A, denotes the period ¢ accumulated technology level that is the compound
of technological growth, ~,, since time 0. I assume 7, is determined by a stationary growth p
and an unexpected permanent technology shock in growth, §,, which is serially uncorrelated and
satisfies E, [exp (§,)] = 1.° T also assume that &, is distributed with mean v, and variance o¢,
and exp (§,) > 1/p. This is a reasonable setting and guarantees the positivity of technology
level process {A,}. The last term in the production function, ¢,, represents the unexpected
non-technology shock that is i.i.d. and satisfies following conditions: E, ,[e,] = 1; &, > 0 (non-
negative output); E,_,[In(e,)] = v.. It is intended to capture all other uncertainties (e.g. oil
shocks, fiscal shocks, and weather disasters technology).? ¢, is independent of the technology
shock &, and other contemporaneous variables. It can be observed that, in this model, the Solow
residuals are separated into a technology component (A,) and a non-technology component (g,).
Such a separation is important in explaining some macroeconomic phenomena according to recent
literature (e.g. Gali, 1999; Gali and Rabanal, 2004).

Some details of the technology are worth mentioning: First, like most models in the literature,
I assume the “neutrality” of technology (Solow, 1957; Griliches, 1988, p.287): Technology does
not change the structure of production function. Second, the obsolescence rate of technology (i.e.

the depreciation of technology) is a constant and is absorbed by the y in this study.! Third,

8Inclusion of technology in a Cobb-Douglas production function is common in the literature (e.g. Griliches,
1988, p.247). Gomulka (1990, p.52) proposes a production function including a technology component with a

power parameter.
71 set this full depreciation assumption to simplify the model and derive a closed-form solution. However,

relaxing this assumption will not alter the model implications in general.
8The assumption of serial uncorrelated technology shocks can be relaxed without changing the model implica-

tions.
9Denison (1967) could be the earliest paper to treat the productivity shock and the technical (knowledge)

progress as separate components. Many recent studies in real business cycle research employ shocks other than

technology shocks to explain economic fluctuations (e.g. Rebelo, 2005).
10Pakes and Schankerman (1984a) set a constant obsolescence rate of technology, while Abel (1984) set a

stochastic one.



for analytical simplicity, the technology process is exogenous and unaffected by labor and capital

input in this model.'!

Here I recapitulate the effective timing of production variables: capital/investment needs only
one period to build up; new technology invented/discovered in this period can be used in the next
period; and labor input can be instantaneously adjusted. There is only one good in this economy,
and all variables considered in this model are in real term (i.e. no inflation). Moreover, the main

sources of risk in this model are the technology shocks, £, and the non-technology shocks, e.
Here I summarize the timeline of my model:

1. In the beginning of a period, time ¢, two shocks occur: an unexpected permanent technology
shock, &,, and a temporary non-technology shock, €,. Both shocks are observed by the agent
and the firm.

2. At the end of period t, the equilibrium wage and labor, are decided by the interaction of
agent’s labor supply and firm’s labor demand. The firm then executes its production plan.
The firm’s output, F'(t), is used to pay the total wage bill and the old debt at the risk-free
interest rate. Finally, the firm issues new debt, if necessary, implements new investment
k..., and distributes the dividend d,. At the same time, the agent receives the dividend
d, and labor income n,w, decides how much to consume today ¢, and how much to invest
in stock s;,, given the current market stock price p;, and how much debt b,,, to lend
to the firm at the next period given the equilibrium risk-free rate. The agent’s and the
firm’s decisions are known by each other, and both parties share the same expectations on

technological and non-technological uncertainties.

3.2 An exact closed-form solution

To initiate my analysis, I need to posit the agent’s utility function. I consider the case in which

the agent’s utility function is logarithmic and additively separable in leisure and consumption:
u(e,, n—n,) = pyIn(e,) + py In(i — ny); (8)
in this case the stochastic discount factor from time ¢ to time ¢ 4 1 is
My =Be/e (9)

The utility function is taken from Long and Plosser (1983) and Hansen (1985). Despite its

simplicity, this utility function allows me to derive an exact closed-form solution and explicit

1 This model can accommodate an endogenous technological growth by setting u¢ = & k¢. Such an endogenous
setting will not alter the main model implication derived in following sections. In the literature, technological

growth has been treated as an exogenous variable (e.g. Panageas and Yu, 2006).



model implications. Nevertheless, I also consider a more general model with inseparable power

utility and capital accumulation in Section 5.

There exist explicit solutions for the optimal ¢, and k,,; policy functions, in which both are

propositional to total output:

¢, =qFy(-)
kt+1 =(1- Q)Ft(')a

where 0 < ¢ < 1. These two conditions are commonly observed in the literature (e.g. Hercowitz
and Sampson, 1991; Cochrane, 1996), and can be derived from the analogous social planning

formulation of this model (Appendix A).12

The equilibrium wage w, and labor n, are jointly determined by the firm and the agent acting
competitively. The firm’s choice of labor input can be obtained by first order condition (FOC) of
Equation (3) with respect to n,:

o Fy()
Ty

= w,, (10)

which simply states that the marginal product of labor equals the wage. The agent’s choice of
labor given the wage rate can be solved by differentiating Equation (1) with respect to n,, which

implies

0 1 ad
Ozuc(ct,ﬁ—nt)j—i—u- (Ct”i_nt):i (Stt+wt> -

on, e ¢ on, n—mn,
1 F,(-
_ (stal () Jr(lst)wt) 7#:ﬂ,7p72_ (11)
q Fy() ny n—ny qny N—1

This first order condition (FOC) states that, at the optimum, the marginal utility of one unit of
leisure should equal the marginal gain of giving up one unit of leisure, which includes wages from
working and dividends from share-holding of the firm. I can therefore solve the labor input and

wage as:
ny = oyn/(peq +ay) and w, = ayayfa;n/(paq + 0[1)]01171]??21%&35:&- (12)

It is observed that the labor is a constant, which is also common in real business cycle literature
(e.g. Benassy, 1995) and matches the social planner’s problem described in Appendix A. It is also

noted that the wage is determined by the investment, technology, and production uncertainty.

The firm’s investment choice is solved by differentiating Equation (3) with respect to k|,
which is
ay F,

B [mt+1kt+ll(.)} =1 Vi, (13)
t+

12This unique Pareto optimal allocation which is derived in a social planner’s model must coincide with the
corresponding competitive equilibrium, which can be regarded as its decentralized counterpart (Harris, 1987;
Danthine and Donaldson, 2001).



where a,F, (-)/k,,; denotes the investment returns and is labelled R{, ;. By imposing ¢, =
q Fy(-) and k, | = (1 — q)F,(-) into Equation (13), it can be found that 1 — ¢ = Ba, and thus

ki1 =BagF () ¢ =(1— Bag)Fy(-). (14)

Here I assume the risk-free assets are in zero net supply, i.e. {b,}72; = 0.!3 Moreover, the

dividend can be derived as
dy = Fy(-) = BayFy () — nyw, = (1 = By — oy ) Fy (), (15)
where n,w, = o F, has been shown in Equation (10).

The final piece of this general equilibrium model is the equilibrium stock price, which can be

obtained by the FOC of agent’s expected utility with respect to s, ;:

_ 0 {ulc,,m—ny) + 370 BTE, [uley,n —nyy )] }
95,41

where ¢, + 8,1 p, +bq = 8y(py +dy) + b, (1 + 7{) + N Wy. (16)

0

b

Note that the labor n, is a constant now. Solving the above equation forward will lead to a

t+7
( H mi) dt+7—‘| : (17)

i=t+1

common pricing formula:

oo
by = Z £
T=1

Taking the derived ¢, ¢, ., and d,_; into Equation (17), the stock price is solved as:

o0 c 6
Py =By Zﬁhc‘t dyyp = 1-3 dy- (18)
h=1 t+h

Without loss of generality, I normalize the number of shares to one in each period (i.e. {s,}52, =
1). Substituting the stock price p, and other variables derived in this section back Equation (2),

the agent’s budget constraint is satisfied, and so the market is cleared.

The stock returns, R7, ;, can be represented as

RS — Pey1 +diy _ ldt+1 _ lFtJrl(')
o Dy g d, B F()

The first observation is that the stock returns are determined by the dividend growth. So, any

(19)

reason that causes higher dividend will lift up the stock returns. It is also clear that the invest-
ment returns exactly equal the stock returns period by period (Rf , = R}, = oo F, () /ky41),
and the Euler’s equation FE,[R, ;m, ;] = 1 holds for all periods (because m,,, = B¢,/c,,; =

BF,(-)/F, 1(-)). The equality between market return and investment return has been shown

131n fact, since the firm’s investment k11 is always less than its output Fi(-) in this model, the representative

firm does not need to borrow anything from the agent.



in production-based asset pricing literature (e.g. Cochrane, 1991; Restoy and Rockinger, 1994;
Zhang, 2005b).

(EXAMPLE 1) Here I use a simple case to exemplify the effect of one positive technology
shock on economic dynamics. I first make the following assumptions: (1) the process of technology

is set as

(A} p=1{1,1,1,...,1,1.5,15,..., 1.5},

t=1

eyt —1 t=t*,...,T

)

which implies one half unit of shock occurring in time ¢*; (2) the process of non-technology is of
all ones: {e,},_; r =1; (3) all variables decided before time ¢* are in steady state, and are set
as constants: F, k= (1—¢q)F, c=qF, R* =1/8, and the economic growth is 1; (4) n is known

to be constant in all time periods. Then, I start my economic dynamics with F}. (-):
F,. (") = aqyn®k* A¥%e,. = agn®k*?(1.5)* = (1.5)®F

ko1 = (1= @) F () = (1 = ¢)(1.5)™ F

Cp = qFu(r) = q(1.5)%F

dpe = (1= Bay — ag) Fp (1) = (1 = By — ay)(1.5)* F
1F.() 1

“ T 2 (1.5)0,

3 F 6()

In the next period (t* + 1), the economic growth will be

s
Ry =

e yq } @2 — (1.5)%209,

Ft*+1(')/F*(') = aonalkg‘2+1Atoi3+1€t*+1/F*(') - [ k
-

because k,. = k. Note that economic growth, consumption growth, and dividend growth are all
the same in this model. It is noteworthy that the capital k plays a key role in the intertemporal
causality between an uncorrelated technology shock and persistent economic growth. Moreover,

the stock return will be

s _ 1 Ft*Jrl(') _ l asas s __ l

Similarly, an uncorrelated technology shock leads persistent stock returns through its effect on
capital k. So, this example clearly illustrates that a positive technology shock will drive higher

economic growth and stock return in the next period.

It is also interesting to inspect the following three predictors implied by this model: the

dividend to price ratio (d — p), the payout ratio (d — e), and the labor income to consumption

10



ratio (SW).

o dy  1-p
d—p: », =5
d—e- dy :(1—ﬁa2—a1)Ft(~):1—ﬁa2—a1
Fy() = nyw, (I —ay)F() I—a 7
QW - Wy o Fy() a

¢ (1=Pay)F () 1-Pay
As a result, in this simplistic model, d — p, d — e, and labor income to consumption are all

constants.

3.3 Model implications

The stock returns can be characterized as follows:

1 = R§+1 = a2Ft+1(')/kt+1 = % 941
= aoaznfhkfﬁflA?ﬁﬁtﬂ = agopan/(pag + )] W%Ft(')]arlA?ﬁﬁtﬂ
= aganlay 7/ (pq + )| (Bagag) 2 kD AT T e Ay
= agaylan/(pyq + )2 (Bagan) ™~ ok 2T A ewp (a8 )ep

=0V, ,, (20)

1€¢4+1

because A, = A, pexp(& ). Y,y = exp (a3, 1)e,, and @, denote all other right-hand
side terms known in time ¢. Note that the conditional mean and variance of ¥, , are time-
invariant because §;,, and €,,, are uncorrelated shocks independent of other variables. Since
Ny, is constant and k;, depends on production in time ¢ — 1, this equation actually informs us
that the time series of stock returns are determined by the time series of technology shocks and

non-technology shocks.4

Let g, , denote the economic growth (g,,, = F,,,(-)/F()), which is also the consumption
growth and dividend growth. The expected stock returns are E,[R; ] = ®,E,[V, ], which is
proportional to expected consumption growth E,[R; ;] oc E,[g,,,]. The relationship between

expected stock returns and technology shocks can be derived as

OE,[R;,,] 0%, a0
Tl _ S p ] = ay0,®, BT, ] = 2208
8£t aé-t t[ t—‘,—l] 293+t t[ t+1] B

because (1) Af*™ = A7?7%u*2%% exp(ayasé,) and 0AT*™ /06, = apa3 A > 0; (2) €, > 0
and exp (36, 1), > 0. As a result, a positive technology shock shall lead to higher expected

E,[9,41] > 0. (21)

market return in the next period.

14 : a3 jasaz gazaz? oy _as?
It can be derived that ki = const A2 A 2,2 A 352 .. et—1€,25€,25..., where const denotes a constant.

11



A main reason of market premium is that market dislikes economic uncertainties that cause the
stock return fluctuations. Here I derive the relationship between the expected market premiums,

E,[R;, | — R{H], and economic uncertainties. From E,[m, R ] =1,

—covy[my .y, Riyy]
Ey[my 4]
_ —cov,[(Ry 1) Ry 4] _COU[\I’t_-i-llvlpt-&-l]

E[(R; 1)1 - B[] ‘
1

BY, ]
SDt(gt+1) >0, (22)

ER;,, - Rl || =

= *COTT[\I/;rllv‘I’t+1]SD(‘I’t_+11)SD(\I’t+1) o,
11

B[V 4] 8

= —corr[U; ', ¥, ,]SD(¥;Y)

because —corr[¥; Y, ¥, 1] > 0. SD denotes standard deviation and SD,(g, ;) = B3 SD,(R{,,)
= f®,SD(¥,, ). This equation delivers two implications: first, the expected market premiums
are always positive. This is very intuitive because that the technology shock and non-technology
shock are two risk sources in this economy, and the agent must be compensated with corresponding
risk premiums in holding the stock. Second, this equation illustrates that the time-variant market
premium can be linked to time-variant volatility of economic growth and dividend growth. Since
economic growth equals consumption growth in this model, this implication is consistent with
the proposition of Bansal and Yaron (2004). In fact, the expected premium is proportional to
conditional volatility of economic growth (E,[R; | — Rl 1] < SD,(g,,1)) because all other terms

on the right hand side of Equation (22) are constants.

8Et [Rfﬁ-l} Ay

= E.lg >0 23
agt 5 t[ t+1] ( )
OE,[Rs , — Rl ] _ _ 1 aa
: tglgt L= _CO’"T[‘I/t-rllv‘I’t+1]SD(‘I’H}1)M%SDt(9t+1) >0 (24)
t+
s 1
Et[Rt+1] = BEt [Qt-s-ﬂ (25)
s - _ 1
E, [Rt+1 - R{-H] = _COTT[\I]H}D ‘I’t+1}SD(‘I’H-11)7_1*SDt(9t+1) (26)
EV, 4] 8
Then, the relationship between expected market premiums and technology shocks can be
derived as
OB,Rs,, — Rl ] _ _ 1 oy
- tggt Bl = _COTT[‘I’t-i-lp\I’t+1]SD<\I’t+ll)m 2ﬁ3SDt(gt+1) > 0. (27)
t+

As a result, a positive technology shock shall lead to higher expected market premium in the next
period. Here I exemplify the effect of a technology shock on conditional variance of economic

growth.
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(EXAMPLE 2) All settings in Example 1 apply here, except the non-technology shock

process,

{Et}izﬁl = {17 17 1; verey 178t*+1}7

t=1,...t*

s

and the variance of non-technology shock is o2. The economic growth rates in time ¢* and t* + 1

are

F()/Fpe 1 () = (1.5)%e,.
Fro 1 ()/Fp () = (1.5)* %y,

and their conditional variances are

Var,[F.(")/Fp_1()] = (1.5)2* 42
Var[Fp.1()/F- ()] = (15)%2 02,

€

For comparison, I consider a benchmark case in which no technology shock exists, i.e. {At}ﬁ:'*il =

1. The conditional variance of consumption growth in this case is simply O’?. It is clear that
Var,Fy..1(-)/F,.(-)] > 2. So, it can be observed that a positive technology shock raises the
uncertainty of economic growth, which results in higher market premium. The same as Example
1, the capital k plays a key role in the intertemporal causality between the uncorrelated technology

shock and persistent variance of economic growth.

Some remarks regarding the implied predictability shown in Equations (21) and (27) are
worth mentioning here. First, the magnitude of return predictability can be constant using log-
linearization, which is E,[Ln(R;,)]/0¢, = aya;.'® Second, all results derived in this paper
are based on serially uncorrelated technology shocks. However, I can also use autocorrelated
technology shocks in this model and deliver similar predictability. Although the magnitude of
return and premium predictability may alter, but the their signs will remain positive. Finally,
under current settings, this predictability is decreasing in time.'® So, technology shocks’ predictive
power shall appear in short-term predictive regressions and may, but not necessarily, appear in

long-term predictive regression.

3.4 FEconomic intuitions

Here I provide the the economic intuitions behind the return predictability and premium ways.

The return predictability can be explained in several approaches. The first is based on the

5By (1) letting riyy = In(R{,,); (2) log-linearizing Equation (20); and (3) differentiating that with respect
to technology shock &, I find that: 8Et[r§+1]/z9§t = agas > 0. It is because that In(A;) = Zfr:o In(yr),

vr = pexp (&), and & is independent of k¢, §t—1, ¢, and e¢41.
16For example, if I log-linearize the stock returns (r{y1), then the h-step ahead predictability, OF¢([r7, 1]/0&;—p =

as a3, shall diminish as h increases because as < 1 in general.
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consumer’s intertemporal substitution. By observing a positive technology shock occurring in
this period, the agent knows that the productivity increases permanently. The permanent up-
shift in the production function due to a positive technology shock is analogous to an increase
in the agent’s permanent income (Friedman, 1957). As a result, the budget-constrained agent
becomes more impatient and wants to consume more in this period. The agent also asks higher
expected asset returns in the next period in exchange for this period’s consumption. Such a
relationship can be simply summarized by the relationship m,,; = (Rf,;)™" = BF,(:)/F, (")
(the inverse of economic growth). Second, in the model, the stock returns are determined by the
dividend growth, which is exactly the economic growth. Since a positive technology shock in this
period causes economic growth persisting for several periods, it therefore forecasts higher stock

returns.

I can also explain the return predictability from the firm’s perspectives. By observing a
positive technology shock occurring in time ¢, the firm realizes that, given fixed labor input,
the firm’s investment return (precisely, the marginal product of capital) in time ¢ + 1 becomes
higher.!” Since the expected market return equals the expected investment return, it can also be

predicted by the technology shock.

It is tempting to assert that, by observing a positive technology shock, the agent would react
by buying more stocks and hence pushing its price higher. This argument, however, presumes
a fixed stochastic discount rate and unlimited endowment or borrowing, and both are not true
in this economy. By linking m,,, = (R, ;)" and Equation (20) together, we know that a
positive technology shock in time ¢t makes the agent prefer to consume more in time ¢ and require
higher expected asset returns due to lower m, ;. The stochastic discount effects exactly offset

the cashflow effects, and imply no contradiction to the market efficiency hypothesis.

Regarding the premium predictability, I start with a simple scenario. When many unexpected
patents occur in this period, the agent expects more possible outcomes of production in the next
period because all these patents are growth opportunities. Conceptually, the range of production
growth rates becomes wider. The production growth is equal to economic growth, consumption
growth, and dividend growth. So, the volatility of economic growth becomes higher and the
agent should ask higher risk premium in holding market portfolio. This is consistent with Bansal
and Yaron’s (2004) model implications that the stock market dislikes economic uncertainty and
conditional consumption volatility drives up market premium. Merton’s (1973) intertemporal
capital asset pricing model (ICAPM) provides another intuition. As a key component in agent’s
investment opportunity set, technology shocks can be treated as systematic risk factor. Based on

all these reasonings, I propose that greater technology shocks lead to higher market premiums.

17The budget-constrained firm will increase its investment k41, which decreases the marginal product of capital
in time t 4+ 1 to some extent. However, the effect of a positive technology shock in time ¢ will not be totally offset

by the investment increase.
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A relevant question is who provides the liquidity? I can assume a very small market maker in
this economy who buys the stock in a positive technology shock and sells the stock in a negative
technology shock. This small market maker can exist because the technology shocks have zero

means.

In summary, a positive technology shock in this period increases both conditional mean and
volatility of economic growth in the next period (E,[g, ;] and SD,(g,,,)). So, the next period’

expected market return and premium should be higher as well.

4 Empirical Study

In the previous section, I find that, within the model contexts, the aggregate technology shocks
predict future expected stock returns and premiums. In this section, I examine whether these

model implications are supported by real data in both the U.S. and U.K.

4.1 Technology proxies and other data

I employ the total number of U.S. patents and total R&D expenditures to measure the aggregate
technology level. Then, I compute the growth rates of U.S. patents and total R&D expenditures
to gauge the aggregate technological growth, and detrend both growth rates to get proxies of the
aggregate technology shock. As previous studies on macroeconomic predictors, I use quarterly
data in the empirical study.'® Here I briefly describe all data, and leave all details to Appendix
B.

For the U.S. patent numbers, I use the U.S. patent applications data since 1976 that may
be manually downloaded from the online database U.S. Patent Full-Text and Image Database
(PatFT) of the U.S. Patent and Trademark Office (USPTO). As noted in Pakes (1985), these
patent applications are “successful” patent applications since they are granted by USPTO some-
time after being filed. Note that the successful patent application numbers are the only patent
database available before March 2001, and has been widely used in the literature of industry
organization. Following Pakes (1985), I presume the effective dates of these issued patent appli-
cations in U.S. are their application dates. I use the successful patent application number by the
end of time ¢ to measure the technology level in time ¢.'® To measure the technological growth,

I need to have a base of the total number of all patents filed before 1976. I estimate the number

181f T use annual data, the valid data of technology proxies can trace back only to the early 60s, which leaves
us about forty sample points only. Another reason for quarterly data is to accommodate the lead time between

technological inventions and production changes.
191 recognize that Abel’s (1984) comments on Pakes (1985) state this is a strong assumption. However, I argue

that some technology insiders, for example the patent law firms, can collect all qualified applications data to

approximate the successful patent applications upon their filings and before they are eventually granted.
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based on Hall, Jaffe, and Trajtenberg’s (2001) dataset; since 1836, the total number of successful
applications for U.S. patents amounts to be 4,065,811 (= Agat) at the end of 1975. The time

series of the number of total patents is illustrated in the upper panel of Figure 1.

Some issues about using patents to measure technology are worth mentioning. First, although
the level of patent applications may not match the aggregate technology level, their growth rates
are presumed to be in a proportional relationship. Second, despite the heterogenous effects of
patents, I use the argument of the “law of large numbers” (see Scherer, 1965; Griliches, 1990),
and presume that all patent numbers are random variables from one distribution. Summing them
up gives us the mean effect of all patents. Third, I recognize that, as a commonly used proxy, the
number of successful patent applications may not be observed immediately because that there
exists an about two year lag between application and issuance. However, according to USPTO’s
statistics, the ratio of patent issuances to patent applications is found to be stationary around
60% in my sample period (1976-2002).2° So, the number of successful patent applications can be

estimated using a constant ratio in the end of each period immediately.

Finally, I recognize one concern addressed by Jaffe and Lerner (2004) regarding the recent
development of U.S. patent system. They report that the USPTO had approved many more
patents since the early 1980s. I argue that the change in the U.S. patent system will not affect
the validity of my empirical study for two reasons. First, the abnormal uptrend of patent growth,
if any, will be removed in computing technology shocks because of which that I detrend the
technological growth (illustrated in the lower panel of Figure 1) to compute technology shocks.
I show that the time series of technology shocks is stationary as shown in Figure 2. Second, I
consider another proxy (R&D expenses) and international evidence, both of which are immune

to that patent anomaly.

For U.S. R&D expenditures, I sum up all quarterly R&D expenses (in millions of dollars)
reported in the Compustat database and transform the number into 1996 dollars. A basis for the
cumulative R&D expenditures to the end of 1988 is necessary to compute technological growth: 1
sum up the annual U.S. R&D expenditures in 1953-1988 reported in National Patterns of Research
and Development Resources:2003 of the National Science Foundation (2005, NSF hereafter) and
obtain 3,299 billion 1996 dollars (= Aj?) as the base level. Then, I add the quarterly total
Compustat industry R&D expenditures to that base level and get an approximate accumulative
industry R&D expenditures. This approximation is reasonable because that, according to the
National Science Foundation (2005), industry R&D weighs 71.9% of total U.S. R&D expenses
during 1990-2000. The growth rate of this approximate accumulative industry R&D expenditures
is named US R&D growth hereafter.?! I check this constructed quarterly R&D growth with the

20The first data file in the following linkage: http://www.uspto.gov/web/offices/ac/ido/oeip/taf/reports.htm
21T assume that the accumulative industry R&D expenditures obtained from Compustat are steadily proportional

to accumulative aggregate R&D expenditures.
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NSF’s national annual R&D growth and find that they move consistently. The time series of
R&D expenditures are illustrated in the upper panel of Figure 1.

Three issues about using R&D expenditures to measure technology are worth mentioning.
First, although the input (R&D) may not fully become the output (technology), I hypothesize
that the input-output ratio between R&D expenditures and the aggregate technology level is a
constant. Second, I assume that the reported R&D expenses are optimal choices of firm managers
following Bound et al. (1984), Pakes (1985), and others. Finally, it is well known that there exists
a lag between the R&D input and technology output. Pakes and Schankerman (1984b) estimate
that the mean lag is between 1.2 and 2.5 years, while this lag probably has become shorter
in recent decades. I will accommodate this lag in constructing the proxy for the R&D-based

technology shocks.

In the upper panel of Figure 1, I plot both the numbers of total patents in 1976Q1-2004Q3
and cumulative real R&D expenses in 1989Q1-2004Q3. It can be observed that these two series
are smooth. In the lower panel of Figure 1, I plot the U.S. patent growth (r! at) and R&D growth
(r74) that are defined as follows:

pat _ Deseasonalized total patents by the end of time ¢
T
t 7 Deseasonalized total patents by the end of time ¢ — 1
rd Deseasonalized cumulative real R&D expenses by the end of time ¢
T =

Deseasonalized cumulative real R&D expenses by the end of time ¢t — 1’

where the deseasonalization method is a one-sided ratio to moving average-multiplicative method,??

which does not to use future information in deseasonalization. It is clear that these two growth
series show significant co-movement. Both series increase in the 90s, reach their peaks around
1998, and then start to decline after that. The drop of R&D growth can be attributed to the

dropping off of internet companies after the bubble burst.

I then construct two proxies for the technology shocks based on rf and 77%. The lower panel

Pt and ry @ contain stochastic trends. I employ a moving

of Figure 1 demonstrates that both r;
average detrending approach to disentangle the conditional expected growth and the unexpected
shock.?? T construct the first proxy for technology shocks based on patent growth (“patent shocks”

hereafter) as follows:

pat pat pat
i =In(ryZy) — Elnrtlh

22For series {y:} with seasonality, I first compute the moving average =+ = (y¢ + yt—1 + yt—2)/3. Then let

r¢ = yt/x¢, and compute s; = r¢/ {riri_17¢—27¢—3. Finally, the seasonally adjusted y¢, y; = yt/s¢.
23This fitting is motivated by Campbell’s fitting for relative risk-free rate (1990, 1991), which is also a smooth

time series with stochastic trends. Moreover, this setting avoids subjective model selection and forward-looking

bias.
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The second proxy is constructed based on R&D growth (“R&D shocks” hereafter) as follows:

H

T ' 1 T

td = l”(rtfl) “H Z ln(rtgl—h)'
h=1

In constructing these two shock series, I have to impose one lag because that the technology shocks
are assumed to occur in the beginning of each period in my model. It can be also regarded as a
reporting lag between the inventions/discoveries and adoptions of new technologies.2* The patent
shock series &7 “ and the R&D shock series &rd are plotted in Figure 2. Due to the quarterly data
frequency, I consider H to be four and eight. Moreover, I also considered other detrending methods
including first-order difference as well as rolling AR(1). Due to space limitation, I reported the
shocks based on moving average with H = 4 only in the context. Both shock series present
stationarity without a significant trend, so the potential bias of an abnormal uptrend in patent
growth proposed by Jaffe and Lerner (2004) no longer exists. The &7 “ and & 4 are autocorrelated
as real business cycle literature (e.g. King, Plosser, and Rebelo, 1988).2°> Moreover, these two

shocks’ sample means are close to zero, and show time-variant volatility.2°

I use working hours as the labor input, real capital per capita as the capital input, and real
GDP per capita as the production output. For the risk-free rate, I use the one-month Treasury
Bill return. Several predictive variables are also considered in forecasting U.S. stock returns.
They are “cay” of Lettau and Ludvigson (2001), the labor income to consumption ratio “SW” of
Santos and Veronesi (2006), the dividend-price ratio “d — p” (Shiller, 1984; Campbell and Shiller,
1988; Fama and French, 1988), the dividend-earnings ratio “d — e¢” (“payout ratio”, Lamont,
1998), the term spread “Term” and default premium “Default” (Fama and French, 1989), and
the relative riskless rate “RRel” (Campbell, 1991). Complete description of all U.S. data is
provided in Appendix B.

In Table 1, I report all summary statistics of variables used in this study, and some correlations
between the technology shocks and other variables. Note that some variables are in logs while
others are not. Numbers reported are consistent with recent studies (e.g. Lettau and Ludvigson,
2001; Santos and Veronesi, 2006). In the rightmost column of Panel A, I present the Augmented
Dickey-Fuller (ADF) statistics (Dickey and Fuller, 1979; Said and Dickey, 1984) for all variables
with first-order autocorrelation equal or larger than 0.85, and report corresponding critical values

according to MacKinnon (1991).27 It is found that all other predictors are very persistent except

24] recognize that a one quarter lag is a simplistic setting. However, it is reasonable to expect that aggregate

R&D input starts to affect aggregate technology level two periods after.
25 A potential argument is if the agent perceives the autocorrelation ex ante. Shephard and Harvey (1990) show

that in finite samples, it is difficult to differentiate a process including an autocorrelated component from an i.i.d.

process.
26The time-dependent volatility strengthens the premium predictability implied by the model.
27The lag number of models in computing ADF statistics are decided the model residuals’ serial correlation,

which should be zero. That is identified by Durbin-Watson statistics.

18



RRel, and only cay and the term spread reject the null hypothesis of the existence of a unit root
according to the ADF test. The predictability results based on autocorrelated predictors call
for advanced robustness checks. In the correlation reported in Panel B of Table 1, I report the
following: (1) &Pt and ¢7¢ are not highly correlated with other predictors; (2) £P%t and ¢7¢ are
positively correlated with CRSP returns and S&P 500 returns. The correlation between patent
growth and R&D growth is 0.48, and the correlation between £P% and £7% is 0.12.

4.2 Predictive regressions

In Section 3.3, I have demonstrated that the expected market returns and premiums should
be positively correlated with current technology shocks. In the empirical work, I regress the
realized simple returns and excess returns on proxies of lagged technology shocks, {¢,}7 ;, and
expect to obtain positive coefficients with significance.?® 1 conduct unconditional regressions
to estimate the average effect of technology shocks on market returns and premiums. I use
the simple and logarithmic CRSP and S&P500 index returns and inflation-adjusted returns as
proxies of market portfolio returns. Since I get almost identical results in all return measures,
I only report the results of logarithmic CRSP inflation-adjusted returns, which is referred to as
“CRSP index returns” hereafter. Also, I obtain similar results in different window sizes (H =
1,4,8) in detrending, hence I report only the H = 4 case in context. Moreover, I compare the
explanatory /predictive power of technology shocks vis-a-vis other predictors at both short-term

and long-term horizons.

In Table 2, T demonstrate that the patent shocks (£P%%) have significant predictive power for
one-step ahead CRSP index returns. I consider both standardized patent shocks and original
patent shocks as the predictors and find that, as the only regressor, their coefficients are all of
significance. The t-statistics of regressions 1 and 8 are 3.37 and 3.38, respectively. The adjusted
R3?s of regressions 1 and 8 are 0.05, which indicate that patent shocks explain 5% of total variance

of (realized) total stock market returns.

Then, I run pairwise horseraces in a multivariate regression framework to compare the predic-
tive abilities of patent shocks and other predictive variables. Most predictor candidates proposed
in previous studies are considered in the horseraces: lagged returns (momentum), consumption
to wealth ratio (cay), labor income to consumption ratio (SW), relative short-term rate (RRel),
log dividend to price ratio (d — p), log dividend to earnings ratio (d — e), term spread (Term)
and default spread (Default). In all other regressions in Table 2, I find that the patent shocks’

coefficients are of significance and have higher t-statistics than other predictors.?? Note that,

28Under rational expectations, the expected return should equal realized return in mean. I also recognize Elton’s

(1999) study indicating that the realized returns on average may not be an appropriate proxy for expected returns.
29Results of Term and Default are both insignificant and unreported due to the space limit.
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the results of these pairwise horseraces do not imply that patent shocks outperform other pre-
dictors. Instead, I interpret these results as evidence for the claim that the predictive power
from technology shocks are distinct from other macroeconomic or financial ratio predictors’. The
insignificance of other predictors could be attributed to one of the following reasons: some change
in the economy’s structure happens during 1976-2004 (e.g. the shift of mean in states mentioned
in Lettau and Van Nieuwerburgh, 2005); the l-quarter horizon is not long enough for those
predictors to perform; their effects disappear in a relatively volatile period, e.g. the 90s; some
predictors, for example the labor income to consumption ratio (SW), are used to predict market

premiums (excess returns) instead of market returns.

In Table 3, I report the results based on another proxy, the R&D shocks £7¢, which also shows
significant predictive power for one-step ahead CRSP index returns. As with patent shocks, R&D
shocks’ coefficients in univariate predictive regressions are all of significance. The t-statistics of
regressions 1 and 8 are 2.02 and 2.03, respectively. The adjusted R?s of regressions 1 and 8 are
0.04, which indicate that the R&D shocks explain 4% of total variance of (realized) stock returns.
In the pairwise horseraces, I also find that the R&D shock’s coefficients are of significance (except
regressions 5 and 12), while no other predictors have significant predictive ability. As a result,
the model-implied market return predictability receives empirical support from patent and R&D
data in the United States.

It is known that, in terms of predictability, the economic significance is as important as
statistical significance. As reported in Tables 2 and 3, the coefficients of standardized £P% and
standardized ¢"¢ are 0.02 and 0.03, respectively. Thus, a one standard deviation positive shock
in patent shocks (R&D shocks) in this quarter implies a 2% (3%) increase in the expected market
return in the next quarter. Similar numbers can be obtained by original patent and R&D shocks
multiplied by their standard deviations. Note that, in regression 5 of Table 2, a one standard
deviation decrease in RRel implies a 1.15% increase in the expected market returns in the next
quarter (—3.49 x 0.326%). So, it is fair to state that the effect of technology shock on stock

returns is of economic significance and reasonable magnitude.

In Figure 3, I exemplify technology shocks’ predictive ability by plotting the realized CRSP
index returns and the forecasted returns (the first regressions in Tables 2 and 3). It is observed
that the technology shocks, especially in the 90s, can capture the trend of market returns. Not
surprisingly, the forecasted return series is quite smooth because it aims to track the expected

market returns, not the realized market returns.

I then consider the predictability in longer horizons by regressing the cumulative future market
returns on technology shock proxies. Specifically, I consider Hodrick’s (1992) 1B standard errors
to account for the overlapping errors existing in the cumulative returns in order to draw a more

correct inference.?? As reported in Table 4, the patent shocks and R&D shocks maintain their

30Ang and Bekaert (2006) study the long-term return predictability and conclude that the performance of

20



predictive power throughout 4-, 8-, and 12-quarter horizons and produces commensurate adjusted

R2. Tt is also found that the intercept terms are consistently positive with significance.

Now, I consider the technology shock’s predictive power for the market premium based on

31 For the market premium, I consider inflation-adjusted CRSP excess

predictive regression.
returns and logarithmic excess returns, inflation-adjusted S&P 500 excess returns and logarithmic
excess returns. Since similar results are found in four cases, I report only the result of the inflation-
adjusted CRSP logarithmic excess returns case (CRSP excess returns hereafter). In Table 5, I
demonstrate that both standardized patent shocks and R&D shocks provide significant predictive
power for one-step ahead CRSP excess returns. The adjusted R?s of regressions 1 and 8 are 0.05
and 0.03, which indicate that the patent shocks (R&D shocks) explain 5% (3%) of total variance
of (realized) excess returns. So, technology shocks’ predictive power is of economic significance,
and coefficients reported here are very close to those in Table 2 for market returns. I then consider
the long-term performance of these two predictors. As reported in Table 6, the patent shocks
and R&D shocks maintain their predictive power throughout 4-, 8-, and 12-quarter horizons and
produces reasonable adjusted R2. I note that, unlike what is found in market return predictability,

the intercept terms are all insignificant.

Now, I consider the technology shock’s predictive power for the real risk-free asset returns,
which are one month T-bill returns from Ibbotson Associates minus the inflations in this study.
In Panel A, I find that the patent shocks’ predictive power for risk-free asset returns is marginal
with ¢t-value 1.61 in the sample period 1977Q1-2004Q3. In Panel B and C based on the 90s
sample periods, I find that both patent shocks and R&D shocks do produce significantly positive
coefficients for risk-free asset returns and provide high adjusted R?. One possible explanation
for this mixed outcome is that we usually use the short-term rate as the proxy for risk-free rate,
and the short-term rate rate is basically controlled by the Fed instead of a outcome of market
equilibrium (in the short-term). The Fed sets the short-term rate based on a combination of
different short- and long-term policy targets, and the Fed’s paradigm of monetary policies is

time-variant.

Based on all these findings, I conclude that the technology shock proxies, £&P% and £"¢, can
explain the changes in expected future market returns and premiums. Using horserace regres-
sions and pairwise correlations, I further show that technology shocks have predictive power in
explaining a distinct part of market return variation that has been explained by other macroe-
conomic variables and financial ratios. Most importantly, this return predictability found in the
empirical study is consistent with theoretical modeling and cannot be simply attributed to data

snooping. As an additional note, the predictability outcome simply describes the movement of

Hodrick’s 1B standard errors is much better than the Newey-West (1987) standard errors or the robust GMM

generalization of Hansen and Hodrick (1980).
317 recognized that the magnitude of correlation implied in my model is in fact time variant.
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“fair” expected asset returns associated with technology shocks, and it should not be interpreted
as a claim of practical profitability based on technology-related information. It is simply because
that the income effect is totally offset by the substitution effect in the log utility function. Some

“real-time” issues against profitability, therefore, are less relevant to this study.

Another noteworthy finding in this section is that not all other predictors have significant
predictive power for returns or premiums in the examined sample period. This phenomenon is
not uncommon in the literature (e.g., Goyal and Welch, 2006) and may be explained by the
following: (1) a fundamental change occurred in the U.S. economy during 1976-2004; (2) other
predictors’ predictive power is diluted in the volatile period, e.g. the 90s. Goyal and Welch
(2006) found that most predictors perform poorly over the last 30 years; (3) the quarterly data
frequency considered in this study may be inappropriate for some predictors, e.g. the labor

income to consumption ratio.

4.3 Robustness checks
4.3.1 Issues in data

Perhaps the most intriguing question is whether the predictability based on technology shocks is
a special consequence of the internet boom and burst period. To answer this question, I examine
their predictability in the subsample 1977Q1-1995Q4 and report the results in Table 8. It can be
observed that the patent shocks, £P%t, still significantly predict CRSP index and excess returns,
and the coefficients and adjusted R? are close to the whole sample results. Another interesting in
this table is that cay, RRel, and d — p present strong predictive power. A possible explanations
for this finding is that these indicators’ predictive power is based on earlier sample period (e.g.
Goyal and Welch, 2006). It would be ideal if we could check this predictability with data prior to
1970. However, due to the unavoidable limitation in data availability, researchers cannot obtain
appropriate technology proxies before 1970 (e.g. Chan, Lakonishok, and Sougiannis, 2001; Rossi,
2005). Finally, even if this predictability occurs only after the 1980s, it does not eliminate my
model since a regime change that new technologies change the aggregate production more effective

and faster in these decades.

Out-of-sample issue is another reasonable concern. In the earlier version of this paper, I
used the sample period ends in 2002Q4 and obtained similar return predictability and premium

predictability.

Equations (21) and (27) indicate that the magnitude of predictability is time-variant. So,
I conduct rolling regressions to inspect the time-variant relationship between technology shocks
and expected market returns as well as premiums. I regress the realized simple returns and excess
returns on lagged patent shocks with a rolling window of 80 quarters. In Table 9, I found that

the the coefficients of standardized patent shocks maintain significantly positive across different
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sample periods. It is also interesting to find that the lowest t-statistics occur in 1981Q1 — 2000Q4.
This may even strengthen my conclusion because the predictability is not weakened if more data

points are included in the sample.

I also check the contemporaneous relationship between market returns and technology shocks.
I regress the S&P 500 returns on concurrent patent shocks and R&D shocks, respectively, and
obtain significantly positive coefficients. As a result, the contemporaneous relationship between

market returns and technology shocks is verified.

I recognize that the “reporting lag” (Balvers, Cosimano, and McDonald, 1990) is an important
issue in predictability. Since most macroeconomic and financial ratio predictors are not immedi-
ately available at the end of a period, the relevant information is not fully revealed to the market
(even insiders) in the beginning of the next period. To take this concern into account, I impose
one more lag and run two-step ahead predictive regressions in patent shocks case.? In Table 10,
I obtain results very close to Table 2. In R&D shocks case, the results in Table 3 have included
one quarter for the input-output lag. Therefore, accommodating this possible reporting lag does

not alter the conclusion that the technology shocks forecast market returns.

4.3.2 Issues in econometrics

An important econometric issue in predictive regression is that the coefficients affiliated to auto-
correlated predictors are upward-biased, especially in the small sample (e.g. Stambaugh, 1986,
1999).33 In Table 11, I report the bias based on Stambaugh’s (1999) estimation and its effect
on coefficient estimates. It is found that, although the patent shocks and R&D shocks are au-
tocorrelated, their innovations (residuals of AR(1) model) do not correlate with the predictive
regression’s residuals (¢; are not significant in Panel C). As a result, the possible small sample

bias is negligible and does not alter the conclusion of predictability.

Employing bootstrap-based tests is another way to examine if the predictive power is merely
a small sample phenomenon. In my implementation, the test statistics are the coefficients affil-
iated with standardized patent and R&D shocks. I use the simple bootstrap to build the null
distribution (no predictability) of test statistics and find that the bootstrap p-values of regression
1 in Tables 2 and 3 are 0.007 and 0.031, respectively. The bootstrap test therefore confirms the
predictability. The details of my implementation are as follows. I first regress the market returns
on a constant and technology shocks, and get the residual series. Second, I randomly resample
the residual series to form the resampled residual series. By adding this resampled residual series

to the estimated constant, I construct the resampled market return series, and then I regress this

321 argue that one quarter is long enough for the market, or at least insiders (e.g. large patent law firms or

USPTO staff), to adjust the stock prices according to the technology shocks.
330n the other hand, Lewellen (2004) and Cochrane (2006) both comment that Stambaugh’s estimation may

substantially understate the predictability in short-term forecasting.
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resampled market return series on technology shocks to estimate Bt (this process is repeated for
1,000 times, i.e. b =1,...,1,000). Finally, by comparing the test statistic to the distribution of
{Bb}bzl,...,l,oom I obtain the bootstrap p-value for testing.

Another common problem with small samples is the existence influential point. It is possible
that the significant coefficients in predictive regressions are caused by some influential data points.
To check this point, I plot the stock returns and lagged technology shocks and find a clear trend

line. Therefore, the found predictability is not induced by influential points.

Boudoukh, Richardson, and Whitelaw (2005) address one concern about long-term predictabil-
ity based on autocorrelated predictors: The multi-horizon predictive regressions are almost per-
fectly correlated with short-term predictive regressions. Their concern is less relevant to this
empirical study because: First, my theoretical model, stated as Equations (21) and (27), mainly
states short-term predictability. Therefore, instead of claiming long-term predictability, I regard
the significant results found in long-term predictive regressions as supportive evidence for my
short-term predictability. Second, both U.S. patent shocks and R&D shocks are less autocorre-
lated than most other predictors, so it is less likely that their long-term predictability is simply

a replication of their short-term predictability.

4.3.3 GMM estimation for the system

Last, I conduct the generalized method of moments (GMM) estimation and J-test (Hansen, 1982)
to check if the whole model is misspecified. The closed-form solution derived in Section 3.2 and 3.3
can be empirically tested. The details of GMM estimation and J-test are provided in Appendix
D. I use the data of output and investment in 1977Q1-2004Q3 and conduct the standard two-step
procedure GMM estimation to estimate the mean and standard deviations of parameters. The J-
test statistic and Newey-West’s (1987) covariance matrix estimate are implemented. In Table 12,
I find that all free parameters are of significance in lag 4 and 8: the estimated subjective discount
factor § are 0.97 and 0.97, which are significantly lower than one; estimated «; (for labor) are 0.69
and 0.67, estimated «, (for capital) are 0.40 and 0.40, and estimated a5 (for technology) are 0.42
and 0.41 — all are significantly larger than zero. The p-values of the J-test are 0.93 in Newey-West
lag 4 case and 0.96 in Newey-West lag 8 case, which imply that all moment conditions do not
significantly deviate from zeros. As a result, the GMM estimation indicates that the proposed
model is properly specified, and most importantly the model-impled return predictability exists
(because o, and o are confirmed to be significantly positive). However, I recognize that, if T use
consumption data instead of investment data, the model is strongly rejected by J-test as widely

perceived in the literature.
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4.4 International evidence: U.K.

In this section, I inspect: (1) whether British patent data help to explain the pattern of real
U.K. output better; and (2) whether U.K. technology shocks measured from patent data has

explanatory power for expected U.K. stock returns.

I manually collect the British patent applications from the Patents and Designs Journal pub-
lished weekly by the Patent Office of the United Kingdom.?* T can therefore construct the time
series of British patent growth and U.K. technology shocks using a procedure similar to that
used in U.S. patent case. By the end of 1989, the total number of applications filed for British
patent since 1948 amounted to 1,878,250 according to the data provided by the U.K. Patent

Office. Thus I can compute the British patent growth rtU Kpat and British technology shocks

tU Kpat using a procedure identical to that used in U.S. data. For the market returns, I use the
FTSE 100 index returns provided by Yahoo!Finance.?® In Figure 4, I plot both the British patent
application growth and the British patent shocks in 1991Q1-2004Q4. It is reasonable to conclude
that the British patent shock series represents a stationary time series. The descriptions of all
other macro-variables including the inflation, labor input (working hour), real capital input per

capita, and real output (GDP) per capita are left to Appendix C.

First, to examine the relationship between technological growth and real output growth, I
regress the logarithmic growth of real GDP per worker on logarithmic growth rates of labor
hours, real investment per worker, and technology. As mentioned, I use the British patent growth
rates to measure technological growth. In Table 13, I find that the real GDP per capita can be
better explained with U.K. technological growth. The regression in Panel A delivers adjusted R?
0.189, while the regression in Panel B delivers adjusted R? 0.081 only. Meanwhile, the coefficient
of technological growth in Panel A has statistical significance. I thus confirm that British patent

data is a reasonable proxy for technology in general and better explains U.K. output dynamics.

In Table 14, I run short-term and long-term predictive regression to examine whether British
technology shocks predict future FTSE100 index returns in logs. In the short-term predictability
reported in Panel A I find that standardized British patent shocks predict future FTSE100 index
returns with significance, while the lagged FTSE100 index returns do not carry any predictive
power. The coefficients of V5P are 0.021 and 0.023 in regressions 1 and 3, and these numbers
are close to the coefficients found in the U.S. data. In Figure 5, I plot the actual returns and
the fitted returns based on regression 1 of Table 14. It is observed that the predicted expected
stock return matches the trend of realized stock returns and, not surprisingly, the predicted return
series is less volatile than the realized one, because I propose the predictability in expected market

returns.

34Note that the number is total British patent applications, not successful patent applications. Nevertheless,

this is the only available measure of U.K. patent accumulations by quarter.
35http://finance.yahoo.com
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Finally, I inspect the predictability at longer horizons and report the results in Panel B of
Table 14. I regress the cumulative future FTSE100 index returns in logs on the British patent
shock, and find no significant predictability in 4-, 8-, and 12-quarter horizons according to Hodrick
1B method (1992). I therefore conclude that, contrary to the findings in U.S. data, patent shocks

do not carry predictive power for long-term U.K. stock returns.

5 A General Model and Its Numerical Solution

5.1 The model and Bellman equation

For the purpose of generality, I also consider a more general model (Model 2 henceforth) with an

inseparable power utility function
(e, —ny) = (1/6)[¢] (A —n,) 7"°, (28)

and capital accumulation. This utility function has been considered by Kydland and Prescott
(1982) and Danthine, Donaldson and Johnson (1998). To enable the calibration, I use two
conditions that are common in the literature: (1) the risk-free asset is in zero net supply in all
periods, i.e. {b,}1_; = 0; (2) the total shares of the stock is normalized to one in all periods, i.e.

{5,152, = 1,36 and transfer the agent’s problem into a Pareto optimum problem:

max E, |3 87(1/0)[cly (0~ ny ) (20)

kty1,me

sit. ¢tk =ogn, kA e + (1 - Q)k,,

where Q is the depreciation rate.3” It can be observed that the optimal investment and labor
policies are mainly decided by the agent, which is intuitive because the agent is the shareholder of

the firm and guides the firm to conduct the resource allocation.My numerical solution to Model 2

relies on the recursive value function iteration technique of Christiano (1990a, 1990b), which has
been used by Danthine, Donaldson, and Mehra (1989, DDM hereafter) and Danthine, Donaldson,
and Johnsen (1998, DDJ hereafter) to search for the optimal policy in a real business cycle study.
The first task is to deflate consumption and capital for stationarity like DDJ. One way is to set
oy = a5 and ay + a3 = 1 (constant return to scale), and have the agent’s maximization problem

become:

Jnax %" (1/8)[e](n —n,) "+ Y (T B (1/8)[e] (= n) )P (30)
t+1,7 =1 s=1

st. &+ ]%t+1'7t+1 = ayn, ke, + (1 — Q)k,,

36These two conditions do not affect the first order conditions in solving the n; and k¢41.
37There is no adjustment cost in this model.

26



where ¢, = ¢, /A, and k, = k,/A,.?® T then apply the recursive value function iteration technique
to identify optimal policies (choice variables), l;:t 41 and n,, under different states (i.e. various
combinations of state variables I%t, v, and ¢,). In each iteration ¢ (time is fixed), the decision
variables are l%i and n,;, and the state variables in each period include 12:, v, and . All state
variables are assigned discrete numbers. All feasible capital choice variable, k, lie in a domain
S, = {k', k2, ... k"), where k' < k% < ... < k'* and k! — ki = ki — k*~!, and Ik denotes the
total number of capital choices. To calibrate the model, I simplify the technological growth ~ as
three values: 7, 7, and 75 with transition probability {pf J}Z j=1,2,3- The non-technology shock

e = {€,e} with probability {1/2,1/2}.

The sequence of approximating value functions is illustrated by the following Bellman equa-

tion:

Vi(k,v,e) = max {%[(aonio‘lff“?s + (1= Q)k — k)" —n,)'"")°

{k;,n;yer
3 2 1
5 .

YD 0 ‘/ifl(ki,'yhagj)pi§}a (31)

h=1j=1

subject to

0 < k; < agn,® k%2 + (1 — Q)k,
0<n <n.

7

V, denotes the i-th iteration with current state variables k, v, and €. h is the next state of ~, pi
denotes the transition probability between current state and next state of v, and j is the next

state of e. I is the domain of feasible choice variables k; and n; (I' = {S, x [0,7]}).

In searching for optimal policy, DMM note that the second term on the right hand side of
equation (31) is irrelevant to choice of n,. So, I can maximize the utility u(-) with respect to n;
first to find the optimal n, by fixed point approximation.®® Then, I can employ an exhaustive
search to find the optimal l%l in S},. The details of optimal policy search is described in Appendix
E.

5.2 Calibration and return predictability

I calibrate the model at the quarterly frequency and set § = 0.98, Q = 0.05, 7 = 1, initial labor
ny = 0.3, and initial capital k, = 0.5. There are 201 total possible capital levels (grid points)

evenly distributed on the range between the minimum k' = 0.01 and maximum £2°' = 2.01. The

Bmax By |00 B7(1/8)[e] (7 = nosr) =110 = max By [S2320 7 (1/8) [ 1 (7 = near)' = (Apir /Arsr )" |

=maxp o, E: [270-0:0 B7(1/5) [é?+7_ (n — ntﬁ_)lfn}é(At_‘_T)né]' Note A¢ = (H§:1 vs)Ap and all Ap terms can
be neglected.
39The optimal n¢, as shown in Equation (49) in Appendix E, may be analytically solved instead.
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upper bound and lower bound are set so as to avoid the optimal choice occurring close to them.
For the agent’s utility function, I set n = 0.333 and § = —0.1 following Kydland and Prescott
(1982). For the production function, I set oy = 15, oy = 0.64, oy, = 0.36, and a5 = 0.64. The
value of « is chosen to deliver: (1) output growth that approximates the historical data; and
(2) positive dividend series. For technology growth, three possible values of v are [1,1.005, 1.01]
with probability pii = 0.5 and pf;j = 0.25 (i # 7). The technology shock is defined as v, —v,_;
in this procedure. For non-technology shocks, I set € = 1.005 with probability 0.5 and £ = 0.995
with probability 0.5.

I randomly simulate {g,}7_; and {7,}7_, to initiate the dynamics. The state variable set
in each period ¢, {IAftmt,at}7 can be computed according to these shocks and initial conditions
described in the preceding paragraph. Then, the optimal policy set {l%t 11 n, I, can be identified
with the searching procedure described in Appendix E.

By adjusting for the deflator A,, I obtain the output {F(n,,k,, A;,&,)}1_;, consumption
{e,}L |, and capital {k,}L_,. The time series of wages and the dividends, {w,}_, and {d,}_,,
are decided by the firm’s decision: The equilibrium wage equals the marginal product of labor,
and the dividend equals F'(n,, k,, A,,¢,) — k, . + (1 — Q)k, — n,w,.

Given the pricing kernel,

ou(c,, 7 —n,)/0c,
Qu(c,_ysn—my_1)/0c,_y’

m, = [ (32)

I can derive the risk-free asset returns, {R; M, as follows: Rl =1/ E,_{[m,].

I assume that the expected stock price equals to the present value of total discounted dividends

in 200 sequential periods:

200 t+r
Py = Z [( H mi) dt+7‘| : (33)

=1 i=t+1
So, I can derive realized returns {R$}._, according to R} = (p, +d,)/p,_;.*°

Then, I generate ten simulations, and each simulation is of length 1,000. I use all the variables
in the period t = 101 to ¢t = 700 to compute their means and standard errors. The averages of
means and standard errors of ten simulations are reported in Table 15. I first compare the
calibrated economic dynamics with the historical data: As mentioned, my target is to match
the historical output growth. The calibrated mean output growth and standard deviation are
0.005 and 0.008, both approximate the historical data. The calibrated mean capital growth,
consumption growth, and productivity growth are all 0.005, which are slightly lower than historical

data. The calibrated mean risk-free asset return is greater than the historical data (0.013 vs.

40Dye to the difficulty of computing expected returns, I use this simplistic and ex post setting. Nevertheless, it

is a reasonable setting because realized returns should be equal to expected returns on average.
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0.006), while the calibrated mean stock return is smaller than the historical value (0.015 vs.

0.022). So, the market premium generated in this model is 0.002 per quarter.

The most important task here is to check the technology shock’s effect in this economy. I
report the correlation between technology shocks and output growth, next period’s stock returns,
and next period’s excess returns. As shown in Table 15, the technology shock is highly correlated
with output growth (88%), which verifies the fact that technology shock is the main driver of
this economy. Then, I find that the stock returns and premiums in next period are positively
correlated with current technology shocks (5% and 0.6%). This outcome is consistent with the
previous simple model implication and empirical findings. Therefore, the return predictability
and premium predictability exist not only in the simple log-economy but also in a more general

economy.

6 Conclusions

This paper highlights the role of technology shocks in market returns and contributes to the
finance literature by providing an analytical model and new empirical evidence. From the theo-
retical perspective, I construct an economy that solves the dynamics of consumption, production,
labor market, and financial assets in a general equilibrium framework. My model characterizes an
aggregate technology component in the production function, in which I demonstrate that technol-
ogy shocks affect expected market returns and premiums across time. This model is novel because
it provides an exact closed-form solution rather than the conventional log-linear approximation.
The main mechanism can be interpreted as follows: technology shocks drive up the means and

volatilities of economic growth, and therefore imply time-variant market returns and premiums.

Perhaps the most important contribution of this paper is its empirical results due to the
scarcity of empirical evidence in the literature (e.g. Lettau, 2003; Panageas and Yu, 2006).
In this paper, I find that U.S. technology shocks, measured by unexpected growth rates in U.S.
patents and R&D expenses, significantly explain future raw and excess returns of the CRSP index
and the S&P500 index at different horizons. More interestingly, they outperform other predictors
including the consumption to wealth ratio, labor income to consumption, relative risk-free rate,
dividend to price ratio, payout ratio, default premium, and term spread. This finding survives
several robustness checks. As a result, technology shocks can be measured and utilized to explain
a distinct portion of market returns and premiums in time series. Moreover, I also find that the
U.K. patent shocks forecast the FTSE100 index and excess returns. These findings justify the
direction of technology shocks’ influence on market returns and premiums. My empirical study

therefore suggests the potential of technology-relevant variables in asset pricing research.

29



Appendices

A. The social planer’s problem

Because the unique Pareto optimal allocation proposed by a central planner model must coincide
with the outcome of a competitive equilibrium model, I can solve the planning version of the model
described in Section 3.2 and derive the equilibrium consumption and labor policy functions. They
will then be imposed into the decentralized version of the model in Section 3.2, which allows me

to solve all other variables.

I assume there is a single, infinitely lived representative agent (consumer-worker-investor)

whose problem is to maximize her/his time-additive expected utility in time ¢ as follows

glélx{u(ctv n— nt) + Z 67Et I:u(ct+7'7 n— nt+r)]} (34)
R T=1

sit. ¢, = Fy(ng, ky, Ayyep) —kyyq,
F(ng, ke, Ay €) = agn, 1 ki A e,
A=A = pexp (&),

where (3 is a subjective discount rate (0 < § < 1), and u(c,, 7,—n,) characterizes the agent’s period
utility function that depends on the agent’s consumption ¢, and leisure n—n, in time ¢; n, denotes
the labor input and 7 denotes total available time. k, , is the investment reserved for capital stock
in the next period, which fully depreciates in production in time ¢t + 1. The firm’s production
function, F(n,,k,, A,,€,), follows a Cobb-Douglas form that contains labor input n,, capital
input k,, a technology component A,, and a non-technology production shock ¢,. For notational
simplicity, I use F,(-) instead of F(n,,k,, A,,€,) hereafter. I assume that 0 < ay,ay, a3 < 1. A,
denotes the technology level at time ¢ that is the compound of technological growth, -,, since time
0. Since technological growth is persistent across time, I assume it follows a logarithmic random
walk process with mean p and an unexpected permanent technology shock in growth, &, which
satisfies E;, [exp (§,)] = 1. € is distributed with mean v, and variance oZ, and exp (&) > 1/p.
The last term in the production function, ¢,, represents the unexpected temporary non-technology
shock in level that is i.i.d. and satisfies E,_,[e,] =1 and E,_,[In(e,)] = v., which accommodates
all other uncertainties and is independent of the technology shock and other contemporaneous
variables. There is only one good in this economy, and it is perishable so that the agent can only
consume it today or invest it for tomorrow’s production. In each time ¢, the agent first observes
the technology shock and non-technology shock, and then decides the consumption, investment,

and working time based on expectations for the future.

The agent’s utility function is assumed to follow

u(cy, n—ny) = pyin(cy) + py In(nn — ny), (35)
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where p; and p, are strictly positive. The value function corresponding to the problem in Equation
(34) is as follows:

Vi(ky, Ay_1:66) = Icrtl%i({mln(ct) + paln(n —n,) + BE, [V(ktJrl? At Et+1)}}' (36)

Note that: (1) The state variable arguments of V(-) represent all information known to the
agent in making her/his labor, consumption, and investment allocation decisions: capital stock,
preceding technology level, current technological shock, and current non-technology shock; (2)

I set ¢, = ¢, F,(-), where ¢, is the fraction of output to be consumed in time ¢, and therefore
ki = (1 —q)F().
I conjecture the solution is of the following value function form:

Viky, Ay—1,6,€0) = @1 + doln(ky) + d3ln(A,_q) + 48, + d5ln(e,), (37)

which is solvable and has an explicit unique solution.*! By taking the expectation of Equation
(37), we know that

BV (ki1 Ay §iyrr€001)] = E{ oy + ¢g In(kyyy) + @3 In(Ay) + ¢y §1y + b5 In(ey )}
= ¢y + &y In((1 — q) Fy(+) + @5 In(A,) + ¢4 By [€ 1] + o5 Ey[In(e )]
= ¢y + @gIn(l —q,) + &y In(Fy(-)) + @5 In(A;) + ¢4 Ve + P5 Ve,

because ln('VtJrl) = In(p) + §t+1ﬂ Et[§t+1] = Ve, and E, [ln(EtJrl)] = V.
I then rewrite the maximization problem in Equation (36) as:
Viky, Ay_1,6,80) = gl%l)f{Plln(QtFt(')) + poln(ii — ny) + BE, [V(ktJrl? Ay §iv1s 5t+1)]}a (38)
which can be derived as:
Viky, Ayy,&o80) = {I{l%{{ml”(%) + pyIn(F, () + poln(n — ny)
+6 (61 + by In(1 = q,) + ¢ In(F,(-)) + ¢3 In(A,) + ¢, Ve + ¢ v.]}. (39)

Since the value function on the right hand side is concave with respect to n, and g,, I can use the
FOCs to find the maximum. Because In(F,(+)) = In(ay) +aqin(n,) +asin(k,) +azin(A,) +1In(e,),
the FOC with respect to n, is

_ 9I(E() P 9 In(F())
0="n on, n—mn, e, on,
_ P P2 T Boyay
ny, n—ny ny

n — _alp + B0
b opa iy + Bey)

411 benefited from a discussion with Jack Favilukis in solving this equation.

So,
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Also, the FOC with respect to g, is

0= P1 By
q: 1- q:
P1
So, q, =
b+ By

Taking form (37), n,, and ¢, into Equation (39), I can solve for other parameters:

b1 + Poln(ky) + dzln(A,_y) + da&, + d5ln(e,) = pyin(q,) + pyIn(F(+)) + poln(n —ny)
8 [¢1 + b In(1 = q,) + @5 In(F,(-)) + 3 In(A,) + 6, Ve + @5 v.]. (40)

The right hand side can be further expanded by decomposing In(F,(-)) = In(a) + a;in(n,) +
ayln(k,) + agln(A,) + In(e,):

piin(q,) + piln(ag) + pragln(ng) + pyagln(k,) + pyagin(A,) + pyln(e,) + pyln(n — ny)
+B¢1 + Boaln(l — q,) + Bdyln(ag) + Bogayln(ng) + Bosasln(k,) + Bogasin(A,) + Bogln(e,) + Bozln(A,)
+B¢sin(p) + Bo,ve + Bosv, (41)

By matching the coefficient of each variable on the left hand side of Equation (40) to those in
the right hand side shown in Equation (41), I can solve all parameters for this planner’s version.
I note that the change of In(k,) is independent of other state variables, which implies that the

coefficients on both sides must match:

Py = P10y + Bdray,

which implies ¢, = P12

1 — Bay

It is noted that ¢, is a constant. Similarly, for In(e,),

> 0.

¢5 = p1 + Boy > 0.

Then, I decompose in(A4,) in Equation (41) because In(4,) = in(A,_,) +in(u) +&,. Since §, and

In(A,_,) are independent of other variables, I get the following results:

¢3 = piag + ﬁszag + ﬁ¢37 and Oy = @3
which implies ¢5 = ¢, = %ﬂﬁ%% > 0.
By taking the result that ¢, is constant and strictly positive to the representation of n, and g,,
I obtain constant solutions for n, and ¢, and use notation n and ¢ for them hereafter. Therefore,
all other terms on the right hand side are constants or ¢;-related, and the value ¢, is solved as

a constant. It is intuitive that all coefficients except the intercept are positive. It is also found
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that n and ¢ lie in meaningful ranges: 7 > n > 0 and 1 > ¢ > 0. Moreover, since all coeflicients

{#;},=1,.. 5 are unique solutions, the {n, g} are unique.

Therefore, I have demonstrated that the proposed value function V(k,, A, ,&,,¢&,) is valid
and provides a unique solution that satisfies general economic intuitions. Last, but not least,
I derive two main results. First, ¢, = ¢F,(-) or equivalently, k,,; = (1 — ¢)F,(-). This can be

used directly in the decentralized economy in the context. Second, the labor input is constant

ai(p1+Be2)n

(n, = m), which will be verified in the decentralized economy.

Moreover, I can set the technological growth as an endogenous process by letting p, = o k'

and still solve this problem in the same way. The only two required conditions are

oy >0
1— fa,
%= Bay + Pag/(1- B)’

and these two conditions are satisfied in the empirical data. In the solution of this setting, the

equilibrium labor input and capital to output ration are still constants.

B. U.S. data in details

1. Gross domestic product (GDP) per capita: the real, seasonally adjusted GDP (ID: GDPC96)
divided by population. Data is obtained from Federal Reserve Economic Data (FRED).42
The unit is in billions of chained U.S. dollars in 2000.

2. Population: the total population including all ages and armed forces overseas (ID: POP)
from FRED. Since the data is in monthly frequency, I use the three-month average as the

quarterly population. The unit is in thousands.

3. Labor input: the average weekly work hours of production workers (ID: CES0500000005)
divided by the hours of five days. Data is obtained from the Department of Labor, Bureau
of Labor Statistics.*> The unit is hours, and the series is seasonally adjusted. The data is

in monthly frequency, and I use the three-month average number as the quarterly data.

4. Investment and capital per capita: the total investment per capita is the sum of real gross
private domestic investment (ID: GPDIC96), real federal nondefense gross investment (ID:
NDGIC96), and real state and local government gross investment (ID: SLINVC96) divided
by the population. All data are from FRED. All data are seasonally adjusted. The unit is
in billions of chained U.S. dollars in 2000. To compute the capital, I accumulate the total

investment of each quarter since 1947Q1 with depreciation rate 2.5% per quarter.

42FRED: http://research.stlouisfed.org/fred2/
43Website of U.S. Department of Labor, Bureau of Labor Statistics: http://www.bls.gov/
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10.

11.

. Price and inflation: The price level used here is the consumer price index for all urban

consumers including all items (ID: CPTAUCSL). It is seasonal adjusted (monthly) and its
base period is 1982-84 (= 100). I use the three-month average of the price index as the
price level of that quarter. The data is obtained from FRED, and the original source is the

Department of Labor, Bureau of Labor Statistics.

. Market returns: I consider the CRSP value-weighted index returns and S&P500 index

returns as two proxies for market portfolio returns. I also consider inflation-adjusted returns,
for which I adjust market returns with inflation measured by the growth rate of the price
level. The CRSP value-weighted returns come from Kenneth French’s website.** S&P500
index returns series come from CRSP Monthly Stock dataset, which does not include the
dividends.

Risk-free asset returns: One month treasury-bill returns from Ibbotson Associates are also

available from Kenneth French’s website.

. U.S. patent applications: I find some inappropriate data points (1982Q2-Q3 and 1995Q1-

Q2) that appear unreasonable jumps, so I substitute them using an interpolation method.
Moreover, because there exists a lag between the application date and granted date of each
patent, the patent application number in the period 2002-2004 requires estimation. I mul-
tiply the number of filed applications reported by USPTO with an estimated granted ratio
based on Published Applications Database. This estimation does not affect my conclu-
sion because I obtain return predictability and premium predictability in sample periods
1976Q1-1995Q4 and 1976Q1-2001Q4.

. U.S. R&D expenses: Some more issues to be addressed here: First, for firms that report only

annual R&D expenses, I divide their annual expenses by four as their quarterly expenses.
Nevertheless, I also construct alternative R&D growth and shocks based on quarterly re-
ported R&D expenditures only and obtain similar return predictability and premium pre-
dictability. Second, since the total R&D expenses in 2004 are so low that I tend to consider
them as outliers. By excluding 2004, however, I still find return predictability and premium
predictability in the sample period 1991Q2-2003Q4.

cay: from Lettau and Ludvigson (2001).% T prolong the original cay data series to 2004Q3
based on the same formula (cay = ¢ — 0.3054a — 0.5891y) with updated ¢, a, y available

from the same source.

Labor income to consumption ratio (SW): the predictor SW is constructed following the
calculation described in Santos and Veronesi (2006). They define the (aggregate) labor in-

come as: compensation of employees, received (Line 2) ( = wage and salary disbursements

441 thank Kenneth French for sharing the data. http://mba.tuck.dartmouth.edu/pages/faculty /ken.french.
45T thank Martin Lettau for making cay data available via http://pages.stern.nyu.edu/ mlettau,.
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12.

13.

14.

15.

16.

+ supplements to wages and salaries) + personal current transfer receipts (Line 16) - con-
tributions for government social insurance (line 24) - personal current taxes (line 25).%6 All
items are in National Income and Product Accounts (NIPA) Table 2.1: Personal Income

and Its Disposition. Data are from FRED database.

Relative riskfree rate (RRel): current one-month Treasury bill rate minus the previous

4-quarter average of that rate.

Dividend-price ratio: the dividend-price ratio series is obtained from Robert Shiller’s web-
site.4” The ratio is based on S&P500 composite index. Since the dividend data is not
available after June 2004, I assume that the dividends in September and December 2004

are at the same level as June 2004.

Dividend-earnings ratio: the dividend-earnings ratio is also obtained from Robert Shiller’s

website.

Term spread (Term): 10-year government bond rate (constant maturity) minus 3-month
T-bill rate (secondary market), both from FRED.

Default premium (Default): Moody’s BAA corporate bond rate minus AAA corporate bond
rate, both from FRED.

C. U.K. data in details

Except patent data, all data are taken from the Office for National Statistics, U.K.%®

1.

British patent: I manually collect the quarterly number of all British patent applications
reported in the Patents and Designs Journal published weekly by the Patent Office of the
United Kingdom. In each issue, I record the page numbers and estimate the number of
applications on each page to estimate the patent applications. The Patents and Designs

Journal has not changed its version since Issue 5212, published in January 1989.

Gross domestic product (GDP) per capita: the real, seasonally adjusted GDP (ID: IHXW)
divided by U.K. population. The unit is in millions of 2003 £.

. Population: I use the people in employment of UK: aged 16 and older (ID: MGRN LFS)

instead of the total population because the latter is available in yearly frequency only in

my search. The series is seasonally adjusted, and the unit is in thousands.

46The consumption defined here is the personal consumption expenditures on nondurable goods and services

(lines 6 and 13) in Table 2.3.5 of NIPA: Personal Consumption. Labor income to consumption ratio is the labor

income divided by consumption in each period. Accruals are neglected in my study.
47T acknowledge Robert Shiller for making the data available via http://www.econ.yale.edu/ shiller/data.htm.
4Bhttp://www.statistics.gov.uk
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4. Labor input: the average weekly work hours. I compute that number by dividing the total
actual weekly hours worked (ID: YBUS LFS) (in millions) by population and hours of five

days. Both series are seasonally adjusted.

5. Investment input per capita: I divide the real total gross fixed capital formation (ID: NPQT)

by population. Both series are seasonally adjusted. The unit is in millions of 2002 £.

6. U.K. stock returns: the FTSE 100 index returns obtained from Yahoo!Finance.*®

D. GMM estimation

Based on the closed-form solution derived in Section 3.2, I can propose an empirically testable

joint hypothesis as follows:

Freeparameters : 3, ay, oy, ag, const,

Production function : E,[AF,  — (An )" (Ak, )] (42)
Investment to output ratio : 0= E,[k,,, — Bay F}] (43)
Stock and investment returns : 0= E,[R;,, — 87 'AF,, ] (44)
Euler equation : =E,m, R{ , —1] (45)

Stock predictability : 0 = E,[r;, | — const; — aya8] (46)

where the stochastic discount factor m, ; = B(An, ;)" (Ak,, 1) "7, 5 (Ae, 1) !, A denotes
the gross growth, and r° = In(R?®). [, oy, o, 0y, ¢, and const, are free parameters (o, is not
included because it is a scalar in the model). I try to make this system include all parameters and
important economic variables that can be measured by available data, but also recognize possible

limitations of this hypothesis setting and GMM estimation.?°

I use real GDP per capita for F, the growth of real GDP per capita for AF, growth of labor
hours for An, growth of real capital per capita for k, growth of real capital per capita for Ak,
patent growth 7%t for ~, patent shocks £P% for &, logarithmic CRSP index and excess returns

for r* and r¢, and € are estimated based on following equation:
In(AF(n,, k,y Ay gp)) = apln(An,) + ayln(Ak,) + asin(y,) + €. (47)

Note that the details of data are described in Appendix B.

Equations (42) to (46) are exactly the moment conditions I can impose in GMM estimation,

4Ohttp://finance.yahoo.com
50Limitations include: (1) T do not include the wage data due to the lack of an appropriate measure for real

labor income; (2) I consider investment data instead of consumption data; and (3) I do not consider excess return

and risk-free rate due to the lack of corresponding closed-form moment condition.
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and their sample analogs are:
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where z, denotes the instrumental variables. I use the constant and two-step-lagged time series of
production growth, labor growth, investment growth, and index returns as instrumental variables
(i.e. z, =[1,AF,_;,An,_,,Ak,, R} _,]) because of the existence of {,. To account for autocorre-
lation and heteroskedasticity of time series data, I use the Newey-West’s (1987) covariance matrix
estimate with lag number nw = 4 and 8 (note that the generally recommended lag number is 4,
floor(T'/3) = 4).

E. Optimal policy search

Here T demonstrate the details in searching for optimal policy n; and k;. As mentioned in the
Bellman equation formation, I can solve the optimal n; associated with each combination of state

variables by maximizing the utility function:

1

u(é,n—mn;) = 5[e"(n — n,)'7"°
= %(aon;’”fco‘% —k; + (1= Q)k)" (R — n,)—m°
- %(an“ — ki + (1= k)™ (A = n,) 77, (48)

where X = aol%aze > 0.
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I note that equation (48) is a concave function of n,, so I may differentiate the utility function

with respect to n,; to find the maximum:

ou(é,n—n;)
on;

= %né(?(nﬁ” — k4 (1= k)Y a, xn N (7 — n,) 170

0=

+%(1 - 17)5(’/_7, — ni)(lfﬂ)5*1(7l)(Xn?1 _ ];:7 + (1 . Q)k)m;
= (&n7" — ki 4+ (1= Q)k)" (7 — ) (1-mI—1
{7 = n)nog X =t — (1= ) (Xne* — k; + (1 - Q)k)}

Since neither Xn®* — k; + (1 — Q)k = 0 (no consumption) nor 7 — n; = 0 (no leisure) can be

optimal for the agent, a solution to the equation above necessitates:

(7 — ”i)ﬂ%/y”?lil = (L —=n)(Xni" — ffi —(1- Q)]Af)

oy, Xt Tt = nay Angt = (1 —n)xnft — (1—n)(k, — (1 - Q)k)
oy, X + (1 —n)(k; — (1 — Q)k)n; = = (1 —n +nay)Xn,,

which implies

_— nnay X (1—n)(k; — (1 — Q)k) il
(I =n+na)X (I—=n+mna))x
=B+Cn; ™, (49)
nna X (1= n)(k; — (1 — k)
where B = , C= . 50
(1 —n+mnay)X (1—=n+na)X (50)

Therefore, I can find the optimal n, by using a fixed point procedure based on Equation (49). I
then use the standard procedure (recursive iteration) in Danthine, Donaldson, and Mehra (1989)
to approximate the optimal n,. Given the known state variables and determined optimal labor
n,;, I then use the exhaustive search to find the optimal k;, which is the grid point in the set S,

that maximizes Equation (31).
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Table 1: Summary statistics

Panel A reports the descriptive statistics of all variables, and Panel B reports the contemporaneous correlation

between technology shocks and stock returns and other predictors.

The sample period for most variables is

1976Q1-2004Q3, except for patent shocks (1977Q1-2004Q3), R&D shocks (1991Q2-2004Q3), and British data

(1991Q1-2004Q4). The t statistics reported are the results of testing whether the means of variables are different

from zero. Selected Augmented Dickey-Fuller (ADF) statistics of some highly autocorrelated variables are reported

in the last column, and the following * denotes that ADF test (with intercept) rejects the existence of a unit root

with 10% significance level. The lag number of models in computing ADF statistics are decided according to the

model’s Durbin-Watson statistic and the ¢-statistic of coefficients of lagged variable as regressor.

Panel A: Descriptive statistics

Variables Mean  Median Max. Min. Std. dev. t-stat. 1st order ADF stat.
(%) (%) (%) (%) (%) (zero)  autocor.
Asset returns
CRSPvw 3.064 3.831 19.202 -25.998 8.183 4.033 -0.043
S&P500 2.240 2.437 18.952 -26.432 7.794 3.095 -0.001
rf 1.494 1.342 3.737 0.220 0.746 21.575 0.949 -1.44
Inflation 0.895 0.694 2.770 0.195 0.576 16.723 0.905 -2.37
FTSE 100 1.465 1.393 16.156 -20.071 7.932 1.431 -0.003
Technology-related variables
rPet 0.543 0.516 0.779 0.341 0.136 42.965 0.989 -0.47
ryd 1.175 1.189 1.383 0.799 0.127 69.490 0.965 2.17
pl Kpat 0.459 0.362 0.951 0.309 0.163  162.599 0.997 -6.79
pat 0.006 0.005 0.085 -0.095 0.028 2.481 0.633
rd -0.011 0.000 0.089 -0.207 0.062 -1.269 0.820
UKpat -0.001 -0.002 0.046 -0.062 0.021  -0.445 0.463
Other predictors
cay 60.581 60.899 63.710 56.477 1.307 0.863 -2.86
SW 89.462 88.207 98.178 82.670 4.238 0.982 -1.96
RRel -0.024 -0.021 0.811 -0.955 0.326 0.668
d—p -355.492  -345.123 -277.936  -449.807 48.153 0.989 -0.37
d—e -77.683 -84.122 -26.928 -118.980 20.362 0.951 -1.20
Term 1.793 1.852 3.800 -1.430 1.267 0.861 -2.95
Default 1.084 0.983 2.513 0.560 0.432 0.912 -2.42
Panel B: Correlation between technology shocks and other variables
CRSPvw  S&P500 cay SW RRel d—p d—e Term Default
pat 0.067 0.094 0.155 -0.161 0.179 -0.023 -0.114  0.145 -0.173
rd 0.134 0.191 -0.152 -0.107 0.263 0.215 0.048 -0.384 -0.388
FTSE100
UKpat -0.198
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Table 2: Short-term forecasting for CRSP index returns: Patent shocks and others

I regress the log CRSP inflation-adjusted returns of time ¢+1 on patent shocks and other predictors in time ¢ (1-step
ahead forecasting): rf_H = X8+ et+1, where Xy denotes a vector of predictors, 8 denotes a vector of coefficients,
and e¢41 denotes the residual. “Lag Ret” denotes the lagged CRSP inflation-adjusted returns, i.e. r;. The
descriptions of all other predictive variables can be found in the context or in Appendix B. Numbers in parentheses
are the ¢-statistics of Newey-West’s estimator (1987), adjusted for serial correlation and heteroskedasticity up to
four lags. The sample period is 1977Q1-2004Q3. I use the standardized patent shocks as the predictor in Panel

A, and the original patent shocks as the predictor in Panel B. Numbers in bold indicate p-values of t-statistics

(one-sided) that are smaller than 5%.

Panel A: Standardized patent shocks and other predictors

i Const. Lag Ret Stand. £P% cay SW RRel d—p d—e adjR?

1 0.02 0.02 0.05
(3.07) (3.37)

2 0.02 -0.05 0.02 0.04
(3.03) (-0.70) (3.44)

3 -0.40 0.02 0.69 0.05
(-1.07) (3.09) (1.14)

4 -0.08 0.02 0.12 0.04
(-0.51) (3.21) (0.64)

5 0.02 0.02 -3.49 0.06
(3.05) (3.55) (-1.77)

6 0.10 0.02 0.02 0.06
(1.70) (3.38) (1.29)

7 0.03 0.02 0.01 0.04
(1.05) (3.27) (0.35)

Panel B: Patent shocks and other predictors

i Const. Lag Ret gpat cay SW RRel d—p d—e adjR?

8 0.02 72.83 0.05
(2.17) (3.38)

9 0.02 -0.05 74.24 0.04
(2.16) (-0.70) (3.43)

10  -0.40 67.83 0.69 0.05
(-1.09) (3.09) (1.14)

11 -0.09 75.61 0.12 0.04
(-0.54) (3.21) (0.65)

12 0.02 80.42 -3.49 0.06
(2.03) (3.55) (-1.77)

13 0.09 73.76 0.22 0.06
(1.63) (3.38) (1.30)

14 0.03 73.96 0.01 0.04
(0.90) (3.27) (0.35)
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Table 3: Short-term forecasting for CRSP index returns: R&D shocks and others

I regress the log CRSP inflation-adjusted returns of time ¢+ 1 on R&D shocks and other predictors in time ¢ (1-step
ahead forecasting): rf_H = X8+ et+1, where Xy denotes a vector of predictors, 8 denotes a vector of coefficients,
and e¢41 denotes the residual. “Lag Ret” denotes the lagged CRSP inflation-adjusted returns, i.e. r;. The
descriptions of all other predictive variables can be found in the context or in Appendix B. Numbers in parentheses
are the ¢-statistics of Newey-West’s estimator (1987), adjusted for serial correlation and heteroskedasticity up to
four lags. The sample period is 1991Q2-2004Q3. I use the standardized R&D shocks as the predictor in Panel
A, and the original R&D shocks as the predictor in Panel B. Numbers in bold indicate p-values of t-statistics

(one-sided) that are smaller than 5%.

Panel A: Standardized R&D shocks and other predictors

i Const. Lag Ret Stand. £ cay SW RRel d—p d—e adjR?

1 0.02 0.03 0.04
(1.25) (2.02)

2 0.02 -0.10 0.03 0.03
(1.23) (-0.87) (2.08)

3 -0.57 0.03 0.98 0.06
(-1.52) (1.97) (1.58)

4 -0.60 0.03 0.72 0.04
(-0.88) (2.03) (0.91)

5 0.02 0.02 2.88 0.03
(1.21) (1.59) (0.52)

6 0.22 0.02 0.05 0.06
(1.68) (1.83) (1.51)

7 0.03 0.02 0.01 0.04
(1.05) (3.27) (0.18)

Panel B: R&D shocks and other predictors

£  Const. Lag Ret grd cay SW RRel d—p d—e adjR?

8 0.02 43.88 0.04
(1.88) (2.03)

9 0.02 -0.10 46.92 0.03
(1.80) (-0.87) (2.08)

10  -0.57 51.80 0.98 0.06
(-1.51) (1.98) (1.58)

11 -0.60 46.37 0.72 0.05
(-0.87) (2.03) (0.91)

12 0.02 38.47 2.87 0.03
(1.74) (1.60) (0.52)

13 0.22 38.64 0.05 0.06
(1.71) (1.83) (1.51)

14 0.03 44.92 0.01 0.02
(0.86) (1.95) (0.18)
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Table 4: Long-term forecasting for CRSP index returns: Patent shocks and R&D shocks

I use cumulative CRSP index return as stock market returns, and run the following long-term predictive regression:
rf+k + ...+ 71,1 =ao+ a1 + Uik, where k denotes the length of forecasting horizon and u;4y ¢ denotes the
overlapping residual. The sample sizes involving predictors £P%t and £7% are 1977Q1-2004Q3 and 1991Q2-2004Q3,
respectively. Numbers in brackets are t-statistics based on Hodrick 1B (1992) standard errors that are designed
for cumulative predictive regression. Numbers in boldface indicate significance under 5% level (one-sided) with 1B

standard errors.

Panel A: Future 4-Quarter Returns
# const. stand &% stand £ adj — R?

1 0.09 0.07 0.18
[2.73] [2.66]

2 0.07 0.07 0.07
[2.06] [2.51]

Panel B: Future 8-Quarter Returns
f const. stand &%  stand £  adj — R?

3 0.18 0.06 0.08
[2.71]  [1.74]

4 013 0.10 0.04
1.97] [2.51]

Panel C: Future 12-Quarter Returns

§  const. gpat grd adj — R?

5 0.26 0.10 0.10
2.66]  [2.40]

6 0.17 0.16 0.05
[1.69] [3.24]
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Table 5: Short-term forecasting for CRSP excess returns: Patent shocks, R&D shocks, and others

I regress the logarithmic CRSP inflation-adjusted excess returns of time ¢+ 1 on standardized patent shocks (Panel

A), standardized R&D shocks (Panel B), and other predictors in time ¢ (1-step ahead forecasting): r7, ; — r{+1 =

Xt + ety1, where X; denotes a vector of predictors, 8 denotes a vector of coefficients, and e;+1 denotes the

residual. “Lag Ret” denotes the lagged CRSP excess returns, i.e. ry — r{. The descriptions of all other predictive

variables can be found in the context or in Appendix B. The sample sizes involving predictors stand £&P*t and

stand £7% are 1977Q1-2004Q3 and 1991Q2-2004Q3, respectively. Numbers in parentheses are the t-statistics of

Newey-West’s estimator (1987), adjusted for serial correlation and heteroskedasticity up to four lags. Numbers in

bold indicate p-values of t-statistics (one-sided) that are smaller than 5%.

Panel A: Standardized patent shocks and other predictors

i Const. Lag Ret Stand. £P% cay SW RRel d—p d—e adjR?

1 0.01 0.02 0.05
(0.85) (3.53)

2 0.01 -0.05 0.02 0.05
(0.85) (-0.62) (3.61)

3 -0.40 0.02 0.68 0.06
(-1.05) (3.29) (1.07)

4 0.01 0.02 0.00 0.04
(0.03) (3.23) (0.00)

5 0.00 0.02 -4.51 0.08
(0.74) (3.78) (-2.49)

6 0.04 0.02 0.01 0.05
(0.72) (3.47) (0.61)

7 0.02 0.02 0.02 0.05
(0.86) (3.40) (0.64)

Panel B: Standardized R&D shocks and other predictors

4 Const. Lag Ret grd cay SW RRel d—p d—e adjR?

8 0.01 0.03 0.03
(0.51) (1.86)

9 0.01 -0.10 0.03 0.02
(0.53) (-0.81) (1.90)

10  -0.65 0.03 1.10 0.06
(-1.68) (1.85) (1.72)

11 -0.70 0.03 0.83 0.04
(-1.02) (1.88) (1.03)

12 0.01 0.02 2.16 0.02
(0.55) (1.47) (0.38)

13 0.21 0.02 0.05 0.05
(1.65) (1.66) (1.54)

14 0.02 0.03 0.01 0.02
(0.54) (1.79) (0.30)

48



Table 6: Long-term forecasting for CRSP excess returns: Patent shocks and R&D shocks

I use cumulative CRSP excess return as stock market returns, and run the following long-term predictive regression:
T T+ T = a0+ a1 &t + uiik,¢, where k denotes the length of forecasting horizon and u;4y ; denotes the
overlapping residual. The sample sizes involving predictors €79 and £7¢ are 1977Q1-2004Q3 and 1991Q2-2004Q3,
respectively. Numbers in brackets are t-statistics based on Hodrick 1B (1992) standard errors that are designed
for cumulative predictive regression. Numbers in boldface indicate significance under 5% level (one-sided) with 1B

standard errors.

Panel A: Future 4-Quarter Returns
# const. stand &P  stand €4 adj — R?

1 0.03 0.07 0.18
[0.81] [2.42]

2 0.03 0.06 0.05
0.99] [2.43]

Panel B: Future 8-Quarter Returns
f const. stand P stand £ adj — R?

3005 0.07 0.08
[0.75] [1.67]

4 0.06 0.07 0.02
[0.93] [2.03]

Panel C: Future 12-Quarter Returns

f const. gpat grd adj — R?

5} 0.07 0.11 0.12
072 [2.14]

6 0.06 0.13 0.03
[0.61] [3.26]
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Table 7: Forecasting for risk-free asset returns with patent shocks and R&D shocks

In Panel A, I run the short-term predictive regression by regressing the inflation-adjusted risk-free asset returns
of time ¢t + 1, r{+1, on the constant term and lagged standardized patent shocks ffat or lagged standardized
R&D shocks gd. Numbers in parentheses are the t-statistics of Newey-West’s estimator (1987), adjusted for serial
correlation and heteroskedasticity up to three lags. Numbers in bold indicate p-values of ¢-statistics (one-sided)

that are smaller than 5%.

Panel A: Patent shocks, 1984Q1-2004Q3
4 const. stand. & adj-R?
1 0.0063 0.0013 0.07

(6.72) (2.09)

Panel B: Patent shocks, 1990Q1-2004Q3
#  const. stand. &’ adj-R?
2 0.0049 0.0011 0.07

(8.37)  (2.37)

Panel C: R&D shocks, 1991Q2-2004Q3
t  const. stand. &4 adj-R?
3 0.0041 0.0033 0.24

(6.93) (4.20)
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Table 8: Short-term forecasting for CRSP index returns: 1977Q1-1995Q4

This table analyzes the predictive regressions in the sample period 1977Q1-1995Q4. I regress the CRSP inflation-

adjusted returns and excess returns of time ¢ + 1 on patent shocks and other predictors in time ¢ (1-step ahead

forecasting). Panel A is for simple return case and Panel B is for excess return case.

“Lag Ret” denotes the

lagged returns. The descriptions of all other predictive variables can be found in the context or in Appendix B.

Numbers in parentheses are the t-statistics of Newey-West’s estimator (1987), adjusted for serial correlation and

heteroskedasticity up to four lags. I use the standardized patent shocks as the predictor in Panel A, and the

original patent shocks as the predictor in Panel B. Numbers in bold indicate p-values of t-statistics (one-sided)

that are smaller than 5%.

Panel A: Simple returns

f Const. Lag Ret Stand. £P** cay SW RRel d—p d—e adjR?

1 0.03 0.02 0.04
(3.36) (2.92)

2 0.03 -0.02 0.02 0.02
(3.77) (-0.19) (2.86)

3 -1.22 0.02 2.05 0.06
(-1.89) (2.49) (1.94)

4 -0.10 0.03 0.14 0.03
(-0.47) (2.60) (0.59)

5 0.03 0.02 -3.80 0.06
(3.80) (3.21) (-1.95)

6 0.28 0.04 0.08 0.08
(2.45) (3.59) (2.23)

7 0.04 0.02 0.02 0.03
(1.44) (2.86) (0.47)

Panel B: Excess returns

# Const. Lag Ret Stand. ¢P* cay SW RRel d—p d—e adjR?

8 0.02 0.02 0.03
(2.38) (2.69)

9 0.02 -0.01 0.02 0.02
(2.54) (-0.17) (2.70)

10 -1.27 0.02 2.11 0.06
(-2.01) (2.32) (2.04)

1 -0.12 0.03 0.15 0.02
(-0.56) (2.46) (0.65)

12 0.02 0.02 -3.81 0.06
(2.68) (2.96) (-1.95)

13 0.26 0.04 0.07 0.07
(2.16) (3.30) (2.00)

14 0.03 0.02 0.02 0.02
(1.27) (2.66) (0.59)
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Table 9: Rolling regression forecasting for CRSP index and excess returns

To inspect the time-variant magnitude of predictability, I regress the logarithmic CRSP inflation-adjusted simple
returns and excess returns of time ¢ 4 1 on standardized patent shocks in time t with a rolling 80-quarter window:
Tipg = a® +b° tpat tef ;riy =af+ beftpat +efy. Panel A reports the results of simple returns, and Panel

B reports the results of excess returns. t-statistics is based onNewey-West’s estimator (1987), adjusted for serial

correlation and heteroskedasticity up to three lags. p-values of t-statistics are for one-sided testing.

Panel A: Simple returns

Sample Period bs t(b%) p-values adjR?
1976Q1 - 1995Q4 0.024 2.92 0.002 0.037
1977Q1 - 1996Q4 0.021  2.51 0.007 0.028
1978Q1 - 1997Q4  0.020 3.20 0.001 0.043
1979Q1 - 1998Q4 0.018 2.38 0.010 0.028
1980Q1 - 1999Q4 0.018  2.32 0.012 0.027
1981Q1 - 2000Q4 0.014 1.78 0.040 0.014
1982QQ1 - 2001Q4 0.014 1.92 0.029 0.012
1983Q1 - 2002Q4 0.022 2.64 0.005 0.062
1984Q1 - 2003Q4 0.022 2.74 0.004 0.066
1985Q1 - 2004Q4 0.022 2.72 0.004 0.065

Panel B: Excess returns

Sample Period be t(l;e) p-values  adjR?
1976Q1 - 1995Q4 0.027  3.02 0.002 0.050
1977Q1 - 1996Q4  0.023  2.57 0.006 0.037
1978Q1 - 1997Q4  0.023  3.25 0.001 0.055
1979QQ1 - 1998Q4 0.020 2.45 0.008 0.037
1980Q1 - 1999Q4 0.019 2.26 0.013 0.033
1981Q1 - 2000Q4 0.016  1.78 0.039 0.018
1982QQ1 - 2001Q4 0.014 1.85 0.034 0.013
1983Q1 - 2002Q4 0.021  2.60 0.006 0.054
1984Q1 - 2003Q4 0.022 2.74 0.004 0.061
1985Q1 - 2004Q4 0.021  2.65 0.005 0.057
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Table 10: Two-step-ahead forecasting for CRSP index returns: patent shocks and others

To accommodate the reporting lag, I examine the predictability of patent shocks and other predictors for 2-step

ahead stock returns in sample period 1977Q2-2004Q3. Here I regress the logarithmic CRSP inflation-adjusted

index returns of time ¢+ 2 on patent shocks and other predictors in time ¢: Tiig = XiB+et4+2. “Lag Ret” denotes

the ry. I use the standardized patent shocks as predictor in Panel A, and the original patent shocks as predictor

in Panel B. Numbers in parentheses are the ¢-statistics of Newey-West’s estimator (1987), adjusted for serial

correlation and heteroskedasticity up to four lags. Numbers in bold indicate p-values of t-statistics (one-sided)

that are smaller than 5%.

Panel A: Standardized patent shocks and other predictors

# Const. Lag Ret Stand. ¢P* cay SW RRel d—p d—e adjR?

1 0.02 0.02 0.03
(3.10) (2.65)

2 0.02 -0.04 0.02 0.03
(2.86) (-0.48) (2.63)

3 -0.42 0.02 0.74 0.04
(-1.00) (2.47) (1.06)

4 -0.14 0.02 0.18 0.03
(-0.79) (2.64) (0.93)

5 0.02 0.02 -1.82 0.03
(3.11) (2.78) (-0.76)

6 0.11 0.02 0.02 0.04
(1.73) (2.56) (1.34)

7 0.03 0.02 0.01 0.03
(0.97) (2.74) (0.28)

Panel B: Patent shocks and other predictors

i Const. Lag Ret grat cay SW RRel d—p d—e adjR?

8 0.02 60.58 0.03
(2.45) (2.65)

9 0.02 -0.04 63.45 0.03
(2.32) (-0.48) (2.63)

10 -0.43 58.81 0.74 0.04
(-1.01) (2.47) (1.06)

11 -0.14 64.14 0.18 0.03
(-0.81) (2.64) (0.93)

12 0.02 63.27 -1.82 0.03
(2.42) (2.78) (-0.76)

13 0.10 63.20 0.02 0.04
(1.66) (2.56) (1.34)

14 0.03 62.16 0.01 0.03
(0.84) (2.75) (0.28)
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Table 11: Check for possible small sample biases

Here I check the correlation between predictive regression residuals and predictor’s innovations because Stambaugh
(1986, 1999) showed that the predictive regressor’s coefficient is upward biased and may deviate substantially from
the standard regression setting. In this table, I report possible small sample biases of the predictability of the patent
shocks (€P%*) and R&D shocks (¢7%). In Panel A, I estimate an AR(1) model for & €41 = ag+a1&: +e§+1. In Panel
B, I use OLS regression to estimate the predictability of CRSP index returns, i, ; = bo + b1 & + €;, ;. In Panel
C, I regress the residuals obtained in Panel B on AR(1) residuals obtained in Panel A, e{+1 =co+c1 6§+1 +ety1-
Finally, I assume that the downward bias of a1 is —(1 4+ 3a1)/7T, and the biases in b1y can be estimated as
Bias = —c1(1 + 3a1)/T and are reported in Panel B for comparison. The corrected b) is therefore by — Bias. All
t-statistics are based on Newey-West’s (1987) standard errors. Sample periods: 1977Q1-2004Q3 for patent shocks,
and 1991Q2-2004Q3 for R&D shocks.

Panel A AR(1) structure of &: &, | =ag+a; & + ef_H

ay a, t(a;) adjR?
gpat 0.012 0.640 837  0.41
3 -0.023 0.864 865  0.59

Panel B Predictive regression for CRSP: r{,; = b, + 0, §, + €/,

bo b, t(b;) adjiR? Bias
gpat 0.021  0.020 3.38  0.05 0.00029
grd 0.015  0.028 2.02  0.04 0.00047

T 3
Panel C €] | =cy+cye +e,

¢ ¢ t(c;) adjiR?
gpat 0.000 -0.011 -1.03 0.00
grd 0.000 -0.006 -0.30 -0.02
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Table 12: GMM esimtaion

In this table, I report the results of GMM test for the null hypothesis composed of several moment conditions. I
use the standard two-step procedure to estimate the mean and standard deviations of the parameters in my model,
and calculate Hansen’s J-test statistic (1982). The moment conditions derived from the Section 3.2 are:

0= Et[AFi1 — (Ang1)®t (Akgg1)*2,3 ]

0 = Eilkiy1 — Baz Fi]

0= Ei[R;,, — 87 AF11]

0= Et[mey1 Ry, — 1]

0= F; [rf+1 — const1 — aaazéi]

where A denotes gross growth rate, pricing kernel myy11 = B(Ant+1) ™% (Akpy1) ™2 (yfjﬁ)*%(AaHl)*l, AF
denotes output growth, An denotes labor growth, Ak denotes capital growth, yP*t* denotes the patent growth, £Pat
denotes the patent shocks, Ae denotes the non-technology shock growth, and 7* = In(R?®). The null hypotheses
for free parameters are: 8 > 1, a1, a2, az < 0, and const; < 0. I use the Newey-West’s (1987) covariance
matrix estimate with lag number 4 and 8, while the lag 4 is commonly used in the literature according the rule

floor(T'/3) = 4. The sample period is 1977Q1-2004Q3.

Panel A: Newey-West (lag 4)

Parameters Coeff. Std. Err.  Null t-stat. p-value

B8 0.971 0.001 1.00 -39.12 0.00
o 0.685 0.213  0.00 3.22 0.00
0 0.404 0.005  0.00 88.68 0.00
Qg 0.417 0.094  0.00 4.44 0.00
consty 0.031 0.001  0.00 44.87 0.00

J-statistic: ~ 11.59
Prob(X%(20) > J-statistic): 0.929

Panel B: Newey-West (lag 8)

Parameters Coeff. Std. Err.  Null ¢-stat. p-value

B8 0.971 0.001 1.00 -49.05 0.00
oy 0.665 0.147  0.00 4.51 0.00
0y 0.402 0.004  0.00 90.08 0.00
Qg 0.407 0.063  0.00 6.46 0.00
const, 0.031 0.001  0.00 50.72 0.00

J-statistic: 6.60
Prob(X?(20) > J-statistic): 0.956
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Table 13: Production function specification of U.K.

I run the ordinary least squares regression with and without technology:

Panel A: In(AF(ng, kt, At,e¢)) = arln(Ang) + asln(Dkt) + asln(y:) + e,

Panel B: In(AF (ng, ki, At,et)) = arln(Ang) + asln(Dki) + e,

where A denotes gross growth rate (e.g. AF(n¢, ke, At,e¢) = F(ng, ki, Ae,et)/F(ne—1,ki—1, Ar—1,€t—1))-
production output F(n¢, ki, A¢,¢) is real GDP per worker; labor is the average weekly work hours divided by hours
of five days; and the investment is the real gross fixed capital formation per worker. The proxy for technological
growth is British patent growth. Details of data are provided in Appendix C, and the sample period is 1991Q1—

2004Q4. The standard errors are adjusted for serial correlation and heteroskedasticity up to three lags by Newey-

West’s (1987) estimator.

Panel A: With technological growth

Coef  Std. error t-stat. adj-R?
Labor (ay) 1.110 0.160 6.91 0.189
Investment (a,) 0.031 0.033 0.93
Technology (a3) 1.571 0.323 4.86

Panel B: Without technological growth
Coef Std. error p-value adj-R?

Labor (ay) 1.288 0.184 7.00 0.081

Investment (a,) 0.134 0.052 2.57
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Table 14: Forecasting FTSE index returns with British patent shocks

In Panel A, I run the short-term predictive regression by regressing the FTSE100 index returns in logs of time

t (r?K) on the lagged index returns in logs (r/%) and lagged standardized British patent shocks (§UKpat):

t—1
rtUK =aop+ai rgj_}g + a2£gf§pat. In Panel B, I run the long-term predictive regression by regressing the cumulative

h-period future logarithmic FTSE100 index returns since time ¢, r,yK + rtUﬁ + ...+ rﬁﬁ_l, on lagged British
patent shocks (Ethipat): rUK 4 r%ﬁ + ..+ 7‘&'271 = ag + ag{?fipat. The sample period is 1991Q1-2004Q4.
Numbers in brackets are the t-statistics based on Hodrick 1b (1992) estimation. Numbers in bold indicate p-values

of t-statistics (one-sided) that are smaller than 5%.

Panel A: Short-term forecasting

i ag a, Qq adj-R?
1 0.015 0.021  0.07
(1.56) (2.35)

2 0.013 -0.122 0.00

(1.14)  (-1.20)

3 0.017 -0.167 0.023  0.08
(1.50) (-1.67) (2.38)

Panel B: Long-term forecasting

g a, a, aq adj-R?

h=4  0.051 0.012  -0.01
[1.29] [0.39]

h=8  0.090 -0.009  -0.01
[1.13] [-0.23]

h=12 0.140 -0.037  0.00
[1.15] [-0.74]
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Table 15: Time Series Properties of Calibrated and Historical Data

In the upper panel, I calibrate the economic dynamics of Model 2 for ten simulations, each is of length 600. I
report the averages of means and standard deviations of variables from ten simulations. Parameters and initial
conditions: 8 =0.98, 7 =1,n90 =0.3,n=0.33,0 = —0.1, ko = 0.5, ag = 15, a1 = 0.64, az = 0.36, and a3 = 0.64.
Norm of the capital partition = 0.01 (i.e. 201 grid points on the range [0.01,2.01]). For technology growth, =,
three possible values are [1,1.005,1.01] with probability p;,; = 0.5 and p; ; = 0.25 where i # j. Technology shock
is & = vt — 7t—1. Two possible values of non-technology shocks are € = 1.005 and £ = 0.995, each with 0.5
probability. The labor productivity is defined as F(n¢, k¢, A¢,e¢)/ne. The sample period for historical data is
1977Q1-2004Q3 and the data frequency is quarterly; the technological growth is patent growth; the output is real
GDP per capita; the capital is real capital per capita; the working time is the weekly working hours divided by
total hours in five days; the consumption is real personal consumption expenditures (billions USD) divided by
the population (thousands); the stock return is the CRSP value-weighted index return (including dividends); the
risk-free asset return is the one-month T-bill return; both risk-free asset return and stock return are inflation-
adjusted with the price level. All other variables are the same as described in Appendix B. I also show the average

correlation between technology shocks and output growth, next period’s stock returns, and next period’s excess

returns.
Calibrated Data Historical Data
Variables Mean Standard Mean Standard
deviation deviation
Technological growth, -, 0.005 0.004 0.005 0.001
Output growth, In(F,/F,_,) 0.005 0.008 0.005 0.008
Capital growth, In(k,/k, ;) 0.005 0.004  0.007  0.003
Working time, n, 0.243 0.000 0.289 0.005
Consumption growth, In(c,/c,_;) 0.005 0.009 0.006 0.006
Productivity growth, In(F,/n,) — In(F,_;/n,_,) 0.005 0.008 0.006 0.007
Risk-free asset return, Rtf -1 0.013 0.004 0.006 0.006
Stock return, R; — 1 0.015 0.004 0.022 0.083
Corr(In(F,/F,_,),&) 0.883 0.029
Corr(R1,&,) 0.050 0.231
Corr(Ry,, — R],1,&,) 0.006 0.239
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Figure 1. Accumulation and growth of U.S. patents and R&D expenses
Panel A: The solid line denotes the number of total successful patent applications (in thousands), and the dashed line

denotes the cumulative real R&D expenses (in billions of USD). Panel B: The solid line denotes the growth of total
successful patent applications, and the dotted line denotes the growth of cumulative real industrial R&D expenses.
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Figure 2. Time series of U.S. patent shocks and R&D shocks

Panel A: U.S. patent shocks; Panel B: U.S. R&D shocks. The details are provided in the context.
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Figure 3. CRSP index returns and forecasts based on technology shocks

The predictor of Panel A is the standardized patent shocks, and the predictor of the Panel B is the standardized R&D
shocks. The bold solid line and dotted line on the top of each figure denote the forecasted and realized log CRSP index
returns, respectively. The forecasts are computed by 1-step ahead predictive regression with the technology shocks and
an intercept (regression #1 in Table 2 and 3). The dashed line on the bottom of each figure denotes the predictive
residuals. Left vertical axis is for predictive residuals, and right vertical axis is for realized returns and forecasts.
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Figure 4. Time series of U.K. patent growth and shocks

The solid line denotes the time series of seasonally adjusted growth of total British patent applications, and the dashed
line denotes the times series of British patent shocks.
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Figure 5. FTSE100 index returns and forecasts based on U.K. technology shocks

The bold solid line and dotted line on the top of each figure denote the forecasted and realized log FTSE100 index
returns, respectively. The forecasts are obtained from 1-step ahead predictive regression using U.K. technology shocks
and a constant (regression #1 of Table 12). The dashed line on the bottom of figure denotes the predictive residuals. Left
vertical axis is for predictive residuals, and right vertical axis is for realized returns and forecasts.
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