
Internet Appendix: A Simple Model

Consider a firm that produces two products, Product A and Product B. In this appendix,

we will examine how its ROA can be affected when it adopts a technology diversity strategy

or not with respect to natural disaster risks.

Production process. The firm has two production lines (Line A and Line B) dedicated

to producing Product A and Product B, respectively. We assume that to produce one unit

of output requires one unit of input (modelled by inventory in the firm) and one unit of

capacity.

When the firm does not adopt a technology diversity strategy, then the production line

of Product B can use neither the capacity nor the inventory of Line A. We therefore only

consider a symmetric case for production lines for the sake of simplicity. The capacity for

Line A and Line B are both K, and the firm holds I unit of inventory for Product A and

Product B, respectively. The production cost per unit (including the cost of inventory and

capacity) is c.

A technology diversity strategy, if adopted, is associated with the following costs and

benefits. First, we assume that the initial cost to adopt a technology diversity strategy is T .

Second, technology diversity enables Line A to produce Product B at an additional cost δ

(and vice versa); we call switch of production ”cross-production.” Finally, when technology

is diversified, the products may pool raw materials or work-in-process together. For example,

firms can use the same raw materials or components to produce different products. In this

case, we consider all 2I units of inventory that can be used to produce either Product A or

Product B.

Product Demand. The demand for Product A (Product B) is modelled by a linear

demand function, pA = αA−βAqA (pB = αB−βBqB), in which pA and pB represent the prices,

whereas qA and qB represent the production quantities. For simplicity’s sake, we consider

αA = αB ≡ α (i.e., the total market size is the same for both products) but βB > βA to

capture that consumers are more price sensitive to Product B than Product A. The firm
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needs to decide the production quantities, qA and qB.

Risk of Natural Disasters. Both production lines face the same risk of being hit by

natural disasters. Let x be zero or one: it is zero if the natural disaster does not hit the

firm, and is one otherwise. The extent that the production lines are damaged by a natural

disaster (assuming that the firm is struck by the disaster) is modelled by a random variable

π ∈ [0, 1]. The extent to which the inventory is affected (e.g., damaged by floods) is modelled

by µ ∈ [0, 1]. Therefore, the available capacity is represented by (1−xπ)K, and the available

inventory is represented by (1− xµ)I.

Profit Maximization. Denote the profit for a firm that does not adopt a technology

diversity strategy as ΠO and the profit for a firm that does adopt a technology diversity

strategy as ΠT . We find the optimal production decision for both firms by maximizing the

respective profits.

Consider the firm that does not adopt a technology diversity strategy. The maximization

problem becomes,

max ΠO = (pA − c)qA + (pB − c)qB (1)

st. qA ≤ (1− xπ)K, and qB ≤ (1− xπ)K,

qA ≤ (1− xµ)I, and qB ≤ (1− xµ)I.

The four conditions show that the produced quantity cannot be higher than the available

capacity and inventory. As a side note, the optimal solution for an unconstrained problem

(without the conditions on qA and qB) can be reduced to the solution of the traditional

problem, max(PA − c)qA and max(PB − c)qB, and they are q∗A = (α − c)/2βA and q∗B =

(α− c)/2βB, respectively.

For the firm that does adopt a technology diversity strategy, the maximization problem

is more complicated. The total production quantity for Product A is qA, which includes the

quantity of Product A produced by Line A, qAA, and that produced by Line B, qAB, at the
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additional cost δ. Therefore, the maximization problem is,

max ΠT = (pA − c)qA − δqAB + (pB − c)qB − δqBA (2)

st. qA ≤ (1− xπ)K, qB ≤ (1− xπ)K, and qA + qB ≤ 2(1− xµ)I,

in which qA ≡ qAA + qAB and qB ≡ qBB + qBA. The optimal solution for the unconstrained

problem is the same as the one for (1): when the capacity and inventory are both sufficient,

the firm will not utilize the cross-production capacity as it involves an extra cost of δ. In

this case, q∗A = (α − c)/2βA and q∗B = (α − c)/2βB, and qAB = qBA = 0. Note that we

exclude the cost of adopting the technology diversity strategy, T , in the maximization, as

this constant does not impact optimal quantity decisions, but rather only impacts overall

profits. Therefore, the final profit is ΠT − T .

Next, we consider the ROA for both cases. ROA is calculated as the ratio of profits

to assets (including capacity and inventory) in the beginning of the period. Regardless of

whether a firm adopts a technology diversity strategy or not, the assets are the same for both

cases; hence, to investigate how technology diversity affects a firm’s operating performance

under natural disaster risks, we only need to study the order of the profit difference, Π∗
T−Π∗

O,

and the adoption cost, T

First, we show that Π∗
T ≥ Π∗

O. It is easy to see that the optimal solution to (1) is

a feasible solution to (2), as (2) is a relaxation of (1) by adding two degrees of freedom,

qAB and qBA, and by relaxing the constraints qA ≤ (1 − xµ)I and qB ≤ (1 − xµ)I to only

qA+ qB ≤ 2(1−xµ)I. As a result, the optimal profit for the firm with a technology diversity

strategy, Π∗
T , is always no lower than the one without such a strategy (i.e., Π∗

O).

Second, as a technology diversified firm incurs a cost T , we need to understand when a

technology diversified strategy can benefit a firm by exploring whether Π∗
T−Π∗

O is larger than

T or not. To understand the impact of various channels on the profit difference, we focus on

the following two scenarios: changing xµ under the condition that xπ ≤ 1− (α−c)/(2KβA),

and changing xπ under the condition that xµ ≤ 1 − (α − c)/(2IβA). The former scenario
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(xπ ≤ 1− (α− c)/(2KβA)) implies that the maximum capacity needed to produce optimal

quantities, which is (α− c)/2βA, does not exceed the remaining capacity, (1− xπ)K. Then,

depending on the impact on inventory (i.e., changing xµ), we can see how the remaining

inventory affects the profit difference in Proposition 1. The latter scenario (xµ ≤ 1 − (α −

c)/(2IβA)) implies that the maximum inventory needed to produce optimal quantities, which

is (α−c)/2βA, does not exceed the remaining inventory, (1−xµ)I. Then, we can see how the

remaining capacity affects the profit difference by changing xµ in Proposition 2. Although

the entire parameter spectrum includes more combinations than just these two, these other

combinations are simply more complicated versions of these two scenarios and does not

provide further insights. Thus, we only discuss these two scenarios for brevity’s sake.

Proposition 1 Consider xπ ≤ 1− (α− c)/(2KβA) and denote Ĩ = (1− xµ)I. The optimal

profit difference Π∗
T − Π∗

O can be categorized into one of the four regions:

Region Π∗
T − Π∗

O

(I): xµ ≤ 1− α−c
2IβA

0

(II): 1− α−c
2IβA

< xµ ≤ 1− α−c
4I

(
1
βA

+ 1
βB

)
(α−c)2
4βA

− (α− c) Ĩ + βAĨ
2

(III): 1− α−c
4I

(
1
βA

+ 1
βB

)
< xµ ≤ 1− α−c

2IβB
− (α−c)2

4βB
+ (α− c) Ĩ − (3βB−βA)βA

βA+βB
Ĩ2

(IV): 1− α−c
2IβB

< xµ ≤ 1− α−c
2IβB

(βB−βA)2

βA+βB
Ĩ2

Figure 1 illustrates Proposition 1 by showing that if the impact on inventory due to

natural disasters is low (i.e., in Region (I)), the benefit of inventory pooling will not be

realized, as there is still ample inventory available. However, when the risk of natural

disaster (xµ) increases, the profit difference becomes an increasing convex function of xµ in

Regions (II) and (IV), but becomes a concave function with the maximum occuring within

the range of Region (III). Finally, when xµ = 1, as can be seen from the profit difference in

Region (IV), Π∗
T − Π∗

O becomes zero again.

Comparing the profit difference, Π∗
T−Π∗

O, with the cost of adopting techonology diversity,

T (as shown in the dashed line), we can see that when Π∗
T − Π∗

O lays above the dashed line
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Figure 1: Change of Π∗
T − Π∗

O

(i.e., Π∗
T −Π∗

O > T ), then a firm with technology diversity performs better than one without

such diversity, and this can only happen when xµ is neither too small (when inventory

pooling has a small impact) nor too large (when there is no sufficient inventory to be pooled

in production). This proposition shows how the channel of inventory pooling can play a

role under the presence of natural disaster risks. Also, when T is lower, the likelihood of

Π∗
T − T > Π∗

O is higher.

Proposition 2 Consider xµ ≤ 1− (α− c)/(2IβA). Denote K̃ = (1− xπ)K and

xπ = min

(
1− δ

2KβA
, 1− δ

2K (βB − βA)

)
.

If δ < (α− c) (βB − βA) /βB, the optimal profit difference Π∗
T − Π∗

O can be categorized into
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one of the five regions:

Region Π∗
T − Π∗

O

(I): xπ ≤ 1− α−c−δ
2KβA

0

(II): 1− α−c−δ
2KβA

< xπ ≤ 1− α−c−δ
4KβA

− α−c
4KβB

(α−c−δ)2
4βA

− (α− c) K̃ + β2
AK̃

(III): 1− α−c−δ
4KβA

− α−c
4KβB

< xπ ≤ 1− α−c
2KβB

−βA
3βB−βA

βA+βB
K̃2 +

[
(α− c)− δ βB−βA

βA+βB

]
K̃ + δ2

4(βA+βB)
− (α−c)2

4βB

(IV): 1− α−c
2KβB

< xπ ≤ xπ (βB−βA)2

βA+βB
K̃2 − δ βB−βA

βA+βB
K̃ + δ2

4(βA+βB)

(V): xπ < xπ ≤ 1 0

But if δ ≥ (α− c) (βB − βA) /βB, then Π∗
T − Π∗

O = 0, regardless of the range of xπ.

Similar to Figure 1, Figure 2 shows the shape changes for Proposition 2. This scenario

represents the case when the additional cost for cross-production (i.e., δ) is small.1 This

proposition shows how the channel of cross-production can play a role under the presence of

natural disaster risks. Also, when T is lower, the likelihood of Π∗
T − T > Π∗

O is higher.

Figure 2: Change of Π∗
T − Π∗

O

1When this additional cost is too high (δ ≥ (α− c) (βB − βA) /βB), then cross-production will be too
costly to be utilized by the firm (i.e. Π∗

T = Π∗
O).
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Proof of Proposition 1. First, as the capacity is not constrained, the cross-production

quantities will always be zero (i.e., qAB = qBA = 0). In the following, to separate the optimal

quantities, we denote (q∗AO, q
∗
BO) as the production quantities for the firm without technology

diversity, whereas we denote (q∗AT , q
∗
BT ) as the production quantities for a firm that does have

technology diversity.

In Region (I), it is easy to see that,

q∗AO =
α− c
2βA

= q∗AT , and q∗BO =
α− c
2βB

= q∗BT ,

as neither capacity nor inventory are constrained, and hence Π∗
T − Π∗

O = 0.

In Region (II), the previous quantities remain optimal for (2), but the dedicated inventory

for Product A is not sufficient for (1); hence, the firm can only process the inventory that it

has on hand,

q∗AO = (1− xµ)I, and q∗BO =
α− c
2βB

,

leading to the profit difference in the proposition.

In Region (III), (q∗AO, q
∗
BO) remains optimal for (1), but for (2), the quantity constraint

will be binding, and hence can be rewritten as,

max ΠT = (pA − c)qA + (pA − c)qB

st. qA + qB = 2(1− xµ)I.

By substituting the binding constraint, qA + qB = 2(1 − xµ)I, into the profit function, we

obtain,

ΠT = 2 (α− c) (1− xµ)I − 2βB(1− xµ)I + 4βB(1− xµ)IqA − (βA + βB) (qA)2 .
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Using the first-order condition, we then have the following optimal solution,

q∗AT =
2βB(1− xµ)I

βA + βB
, and q∗BT =

2βA(1− xµ)I

βA + βB
.

At this point, we can see that the optimal price for the two products are the same, and the

optimal profit is

2(1− xµ)I

(
(α− c)− 2βAβB(1− xµ)I

βA + βB

)
,

thus leading to the profit difference in the proposition.

Finally, in Region (IV), (q∗AT , q
∗
BT ) remains to be optimal, but because both inventory

piles are not sufficient to sustain the production for both A and B, we obtain

q∗AO = (1− xµ)I, and q∗BO = (1− xµ)I,

leading to a profit of

Π∗
O = 2 (α− c) (1− xµ)I − (βA + βB) (1− xµ)2I2,

and thus the profit difference in the proposition.

Proof of Proposition 2. First, we know that one of the cross-production quantities

will always be zero (i.e., if qAB > 0 then qBA = 0, and vice versa). Moreover, because the

price sensitivity of Product B is higher, we know that qBA = 0.

Next, we analyze the firm with technology diversity. The optimization in this case can

be rewritten as

max ΠT = (pA − c)qA − δqAB + (pB − c)qB

st. qA ≤ (1− xπ)K and qB ≤ (1− xπ)K.

If cross-production is not optimal to use (i.e., qAB = 0), then this optimization will be
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reduced to (1), and hence Π∗
T − Π∗

O = 0. Therefore, we next find the range of parameters

that allows for cross-production.

When the capacity is not sufficient (i.e., xπ > 1 − (α − c)/(2KβA)), then it is always

optimal to have qA = (1 − xπ)K + qAB. For Product B, we consider two cases: (a) (1 −

xπ)K − qAB ≥ (α − c)/(2βB) and (b) (1− xπ)K − qAB < (α − c)/(2βB). For case (a), the

maximization problem becomes,

max ΠT = (pA − c)qA − δqAB +
(α− c)2

4βB
,

and q∗BT = (α− c)/(2βB). By substituting qA = (1− xπ)K + qAB, we obtain,

max ΠT = ((α− c)−βA(1−xπ)K−βAqAB)(1−xπ)K+((α− c− δ)−βA(1−xπ)K−βAqAB)qAB+
(α− c)2

4βB
.

Taking the first derivative with respect to qAB, we have the first-order condition as,

qAB =
α− c− δ

2βA
− (1− xπ)K,

leading to the optimal profit,

Π∗
T =

(α− c− δ)2

4βA
+

(α− c)2

4βB
.

For this cross-production quantity to be positive, we require

xπ > 1− α− c− δ
2KβA

.

By substituting qAB to the condition for case (a), we also require,

xπ ≤ 1− α− c− δ
4KβA

− α− c
4KβB

.
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Combining all conditions together, we know cross-production capacity is only effective when,

1− α− c− δ
2KβA

< xπ ≤ 1− α− c− δ
4KβA

− α− c
4KβB

.

Therefore, only when the additional cost for cross-production is low,

δ <
(α− c) (βB − βA)

βB
,

will cross-production be effective.

In this case, because the parameters satisfy the following inequality,

1− α− c
2KβA

< 1− α− c− δ
2KβA

< xπ ≤ 1− α− c− δ
4KβA

− α− c
4KβB

< 1− α− c
2KβB

,

we have the optimal quantities and the optimal profit for the one without technology diversity

as,

q∗AO = (1− xπ)K, q∗BO =
α− c
2βB

< q∗AO, and

Π∗
O = (α− c) (1− xπ)K − βA(1− xπ)2K2 +

(α− c)2

4βB
.

Combining these results, we then have the following partial table:

Region Π∗
T − Π∗

O

(I): xπ ≤ 1− α−c−δ
2KβA

0

(II): 1− α−c−δ
2KβA

< xπ ≤ 1− α−c−δ
4KβA

− α−c
4KβB

(α−c−δ)2
4βA

− (α− c) (1− xπ)K + βA(1− xπ)2K2

Next, for case (b), we obtain (1− xπ)K − qBA < (α− c)/(2βB), which is equivalent to,

xπ > 1− α− c− δ
4KβA

− α− c
4KβB

,
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the remaining capacity of Line B is not sufficient to produce the optimal quantity for Product

B. Therefore, we can rewrite the optimization to qAA = (1− xπ)K, qBB = (1− xπ)K − qAB,

and hence the optimization becomes,

max ΠT = (α− c− βA((1− xπ)K + qAB))((1− xπ)K + qAB)− δqAB

+(α− c− βB((1− xπ)K − qAB))((1− xπ)K − qAB).

Also, the first-order condition becomes,

qAB =
βB − βA
βA + βB

(1− xπ)K − δ

2 (βA + βB)
.

This cross-production quantity must be positive,

xπ < 1− δ

2K (βB − βA)
,

and also results in a positive qBB,

xπ < 1− δ

2KβA
.

In the feasible region, the optimal profit becomes:

Π∗
T = − 4βAβB

βA + βB
(1− xπ)2K2 +

[
2 (α− c)− δβB − βA

βA + βB

]
(1− xπ)K +

δ2

4 (βA + βB)
.

Therefore, we can categorize the remaining regions as the second part of the table with

Regions (III) to (V).

Finally, if the extra cost of cross-production is too high,

δ ≥ (α− c) (βB − βA)

βB
,

then Region (II) will not adopt any cross-production, and hence Π∗
T − Π∗

O = 0. Moreover,
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the intersection of the condition for case (b) and the condition for cross-production,

1− α− c− δ
4KβA

− α− c
4KβB

< xπ < 1− δ

2K (βB − βA)
,

is an empty set in this case, meaning that cross-production is not allowed and, hence, Π∗
T −

Π∗
O = 0.
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